

Stack Effect

Failed component Fix or Replace or Forget Each strategy has initial, ongoing and residual costs

Poor Maintenance can create The Perfect Storm

- What is the service life?
- Can one get at it?
- Can it be repaired?
- What are the consequences of failure?

Meter	Flow (CFM)			Meter	Flow (CFM)				
Pressure (Pa)	E1	E2	E3	Pressure (Pa)	E1		E2		E3
0.6	34	16	8	4.4	92		43		21
0.8	39	19	9	4.6	94		44		22
1.0	44	21	10	4.8	96		45		22
1.2	48	23	11	5.0	98		46		23
1.4	52	25	12	5.2	100		47		23
1.6	55	26	13	5.4	102		48		23
1.8	59	28	14	5.6	103		49		24
2.0	62	29	14	5.8	105		50		24
2.2	65	31	15	6.0	107		51		25
2.4	68	32	16	6.2	109		52		25
2.6	71	33	16	6.4	111		52		25
2.8	73	35	17	6.6	112		53		26
3.0	76	36	17	6.8	114		54		26
3.2	78	37	18	7.0	116	100	55		27
34	81	38	19	7.2	117	1000	56		27
3.6	83	39	19	7.4	119	100	56		27
3.0	85	40	20	7.6	121		57		28
3.0	87	41	20	7.8	122		58	1.	28
4.0	00	42	21	8.0	124	1000	59	1. 1.	28

Exhaust Fan Flow Meter The Energy Conservatory Copyright 2021

Measurements and Predictions Acccuracy Pays

Bias diminishes accuracy We see what we want to see We see what we expect to see Moments of truth can be both unwanted and unexpected Unpleasant surprises rarely add value

The Blower Door Can:

Measure envelope air tightness Predict heating and cooling costs Identify/locate air leakage

Poorly Designed Buildings

A poorly designed building can't endure prolonged weather flux and Requires high ongoing cash inputs to maintain value

Poorly Designed Buildings

Become altars where building components are sacrificed to the laws of physics

Point of use products

Created quickly

- Tailored to satisfy a particular short-term need
- Time savers
- From food to fabrics
- What is a human life worth?
- Am I just another fossil fuel extrusion?

Failure Analysis

- How does the product interact with the building system?
- What are the products specifications?
- Are there critical installation criteria?
- Was product operated properly?
- What is the predicted service life?
- Is component designed to be replaced?

Sustainable New Buildings

- Affordable, durable designs
- Easy installation
- Predictable decay
- Sacrificial wear parts
- Simple affordable repairs

"There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact." Mark Twain