

Performance Glazing Coatings, Layers & Gases

Learning Objectives

After Viewing This Presentation You Will Understand:

- q The NFRC Labeling System
- q Light Spectrum
- q Coating Performance
- q Application Technology
- q Engineering
- q U-Factor / SHGC / VT / VR
- q Building Design Application of Coatings

n NFRC Label

National Fenestration Rating Council

n Glazing and the Solar Spectrum

Windows reflect, absorb or transmit visible light, ultraviolet light, and heat.

n Why Low E Coatings?

Code Compliance

Energy Savings

Improved Comfort

Reduced Fading

Less Condensation

Increased Light & View

Low E Effect On Winter Nights

Total Btu's exiting through the glazing 34 Btu's

17 Btu's 11 Btu's

n Low E Effect On Summertime Sun

n Improved Comfort

n Greater Protection from UV

n Greater Protection from Fading

n Less Condensation

n Increased Light and View

n Energy-efficient glazing systems

- n Defining Emissivity (E)
- n Types of Low E
- n Where Low E is Applied
- n How it's Applied
- n Engineering for Performance

n Emissivity (E)

Measure of a material's ability to emit long wave radiation (heat).

n Types of Coatings

<u>Sputtered</u> vs.

n Low emissivity n Low-Med-High SHG n Silver based n Vacuum deposition n Uniform n Neutral color n Low Haze n Must be insulated

<u>Pyrolytic</u>

- n Medium emissivity
- n High SHG
- n Metal oxides
- n Spray process
- n Can be non-uniform
- n Can have color
- n Can have haze
- n Single Glaze

n Surface Designation

n Low E Coating Locations

Surface #2 (Dual Pane)

- n Better overall performance
- n Reduces Solar Heat Gain
- n Reduces Summer Inside Glass Temperature
- n Reduces Winter Thermal Breakage Potential

Surface #3 (Dual Pane) Passive Solar n Increased Solar Heat Gain n Increased Inside Glass Temperature

Note: Winter Nighttime U-Value is the same for both surface #2 or surface #3

n Low E Coating Locations

Surface #4 (Dual Pane)

- n Reflects Heat
- n Lowers U Factor
- n Reduces Solar Heat Gain
- n Decreases Inside Glass Temperature (Increasing the Risk of Condensation)
- n Rivals Tri-Pane Performance

Tri-pane is typically assembled with the coatings on surfaces 2 and 5.

n How Coatings are Applied

n How Coatings are Applied

§Typical Available Low E Coatings

	LoĒ Products	Silver Layers	Visible Light Transmission
	LoĒ-180	1	80
	LoĒ ² -272	2	72
	LoĒ ² -240	2	40
	LoĒ ³ -366	3	66

n Spectrally Selective Coatings

Adjusting the various coatings will cause variations in the n U-Value n Solar Heat Gain (SHGC) n Visible Light Transmittance (VLT) n Visible Light Reflectance

n U-factor / R-value

U-factor: The measurement of heat loss or gain through a material or assembly.

R-value: The resistance a material has to heat flow.

n Center of Glass U-factor (Btu/hr/ft²/°F)

Clear / Clear	0.47
Clear / LoE-180 tm	0.28
LoE -272 tm / Clear	0.25
LoE -366 tm / Clear	0.24
LoE -240 tm / Clear	0.26
Triple-Pane LoE-180 tm / Clear / LoE-180	0.17
Triple-Pane LoE -366 tm / Clear / LoE -180 tm	0.13

n Solar Heat Gain Coefficient (SHGC)

Number between 0 and 1

The lower the SHGC the less solar heat is transmitted and the greater its shading ability

n Solar Heat Gain Coefficient (SHGC)

		Indoor
		Glass
	<u>SHGC</u>	lemp F
Double-Pane Clear	0.78	90
Double-Pane LoE-180 tm	0.70	86
Double-Pane LoE-180tm Gray Tint	0.37	93
Double-Pane LoE-240 tm	0.25	86
Double-Pane LoE -272 tm	0.41	84
Double-Pane LoE -366 tm	0.27	82
Triple-Pane LoE-180 tm	0.57	95
Triple-Pane LoE -366 tm	0.24	92

Krypton Gas Typically Decreases SHGC by -0.02

n Visible Light Transmittance (VT)

An optical property that indicates the amount of visible light transmitted.

Number between 0 and 1

n Visible Light Transmittance (VT)

Clear / Clear	0.82
Clear / LoE-180 tm	0.80
LoE-180 tm Gray Tint	0.53
LoE -272 tm / Clear	0.72
LoE -366 tm / Clear	0.66
LoE -240 tm / Clear	0.40
Triple-Pane LoE-180 tm / Clear / LoE-180 tm	0.69
Triple-Pane	
LoE -366 tm / Clear / LoE -180 tm	0.51

n Visible Light Reflectance (VR)

Outdoor Visible Light Reflectance

In the visible light spectrum, the percentage of light that is reflected from the glass surfaces relative to the C.I.E. Standard Observer.

C.I.E. Standard Observer:

Since Humans perceive color and appearance in different ways, subjectively, The C.I.E. Standard Observer attempts to standardize the human observer as a numerical representation of what the average person sees.

Indoor Visible Light Reflectance

The percentage of visible light that is reflected from the glass surfaces to the inside of the building.

n Visible Light Reflectance (V)

	% OUT	% IN	
Clear / Clear	15%	15%	
Clear / LoE-180 tm	14%	14%	
LoE-180 tm Gray Tint	9%	13%	(Surface #3)
LoE -272 tm / Clear	11%	12%	
LoE -366 tm / Clear	11%	12%	
LoE -240 tm / Clear	14%	10%	
Triple-Pane LoE-180 tm / Clear / LoE-180 tm	19%	19%	
Triple-Pane LoE -366 tm / Clear / LoE -180 tm	14%	17%	

n Solar Spectrum

n Solar Spectrum

n Spectrally Selective Coatings

n Resources

Cardinal Glass

http://www.cardinalcorp.com

Built around you.

Questions?

Thank you