

Doug Manthey – Conservation Technologies Chad Trebilcock – Minnesota Power

Agenda

- Overview of Minnesota Power's Conservation Improvement Program (CIP)
 Chad Trebilcock
 The Nuts and Bolts of Minnesota Power's
 - Triple E New Construction Program
 - Doug Manthey

CIP Overview

- CIP formally started in 1980 under Minnesota Statute 216B.241
- Applies to electric and gas utilities
 - Delivered fuels (propane, fuel oil) exempted
- Next Generation Act of 2007
 - Shift from 1.5% spending to 1.5% savings requirements

Next Generation Act of 2007

- 25% Renewable by 2025
- Greenhouse Gas
 Reduction Goals
 - o 15% by 2015
 - o 30% by 2025
 - o 80% by 2050
- 1.5% Energy Savings Goals

Filing Requirements

- Minnesota Rules Chapter 7690
- Triennial Filing June 1st
 - Proposal for CIP activity
- Consolidated Filing
 - April 1st
 - Annual Filing
- Reporting through eDockets &eFiling

- Energy Savings Opportunities
- Most beneficial to those who take advantage of programs

Minnesota Power's Conservation Improvement Program (CIP)

Residential

- Triple E Plus
- Energy Partners Low Income
- Business, Commercial, Industrial, Agricultural
 - o Powergrant
- Small Scale
 Renewables

- Integrated Energy Education and Communications
 - Learn and Earn
 - Energy Design
 Conference and Expo
- Energy Analysis
- Research and Decelopment

- Helping Customers with Energy

Space Heating

Home Must be Electrically Heated

- Firm Rate
- Dual Fuel (must have non-electric backup)
- Controlled Access/Storage Heating
- Ground Source Heat Pumps
- To participate in the Triple E Program please call 218-355-2843

Program History

Triple E

- Energy Efficiency / Education / Evaluation
- Goal is kWh
 - Method is better building

Heat Loss

Basic Goals

- House as a System
- Increase Insulation
- Decrease air Leakage
- Budget
- Southern Exposure, Lights, Appliances, etc.

Historical Air Tightness

cfm/sq ft floor @ 50

Air Tightness By Insulation Types

- Air Tightness does NOT depend on the type of insulation that is installed
 - Cellulose with Poly .159
 - Fiberglass with Poly .24
 - Insulated Concrete Forms (ICF) .147
 - Spray Foam .159
 - Structurally Insulated Panel (SIP) .138

Raising the Bar

Put out Bids on Three Houses

- Slab House
- Basement House
- House with Basement & a Cantilever
- Cost/Benefit was performed

Program Process

- Plan Review
- Framing Visit
- Pre-Drywall Visit
- Final Test

Plan Review

1. Review all aspects of the building

- Insulation Requirements
- Lights and Appliance Reminder
- Checklist
- 2. Chance to change the Plan
- 3. Reminder of new aspects of the program
- 4. For a limited time Heat loss calc

Framing Visit

- 1. On-Site review of project
- 2. Chance to confirm the plan
- Discuss areas that are difficult to air seal and/or insulate.
 - Cantilevers
 - Bonus Rooms
 - Can Lights
 - Installs on exterior walls: tubs, showers, fireplaces, soffits, etc.

Pre-Drywall Visit

1. Confirm all program requirements

- Insulation Levels
- Reminder about lights and appliances
- HVAC Review
- 2. Review Air tightness opportunities
 - Bonus Rooms
 - Can Lights
 - Rigid Material behind tubs/showers/soffit installs

Final Test

- 1. Blower Door
- 2. Infrared Camera
- 3. Appliance Checks
- 4. Light Count

Blower Door Testing

Infrared Camera

Program Requirements

	Tier I	Tier II
Attic	R-50	R-60
Exterior Walls	R-21	R-21+5 cont. R-20 cont.
Rim/Band	R-20 cavity	R-20+5 cont.
•	R-15 cont.	R-20 cont.
Foundation/Basement	R-15	R-20
Slab Perimeter	R-15	R-20
Under Slab	R-15	R-20
Firs over Ext/Unheated	R-24+5 cont	R-30+5 cont
Firs over heated space	R-24	R-30

- Window U-Value: ≤.33 / ≤.28 additional rebate.
- Electric Heat: Required
- Back Up Heat: ≥90% AFUE w/ECM motor or 90% AFUE boiler
- Electric Cooling (SEER): ≥14.5
- Air to Air Heat Exchanger: ≥76%
- Thermostats for Forced Air: Energy Star Programmable
- Water Heater: Any
- Duct Location: Any (except under slab)
- Duct Insulation: R-8
- Energy Star Lighting: 5 Fixtures
- Appliances: Energy Star dishwasher, clothes washer and refrigerator

- Window U-Value: ≤.30 / ≤.28 additional rebate.
- Electric Heat: Required
- Back Up Heat: ≥90% AFUE w/ECM motor or 90% AFUE boiler
- Electric Cooling (SEER): ≥14.5
- Air to Air Heat Exchanger: ≥80%
- Thermostats for Forced Air: Energy Star Programmable
- Water Heater: Varies w/size
- Duct Location: Conditioned Space
- Duct Insulation: R-8
- Energy Star Lighting: 5 Fixtures
- Appliances: Energy Star dishwasher, clothes washer and refrigerator

New to Triple E

- Thermal break on all concrete outside the slab
- Six sided cavities
- Back up heat requirements
- Passive Radon (with electric box)
- Fire breaks in double stud walls
- No under slab ductwork
- FA system must have sealed ductwork
- Mechanical rooms part of house not garage
- Limited Time Only modeling every house

Energy Saved - kWh

	Code - Ann Consump	Code - Design Load	As Built - Ann Consump	As Built - Design Load
House #1	11,810.00	6.27	5,451.00	3.72
House #2	15,532.00	8.06	8,294.00	5.16
House #3	13,129.00	6.30	9,407.00	4.86
House #4	35,578.00	18.43	13,188.00	8.82
House #5	14,800.00	8.15	3,428.00	3.05
House #6	8,323.00	4.75	4,777.00	3.19
House #7	34,025.00	15.77	19,020.00	9.88
House #8	17,877.00	9.08	9,085.00	5.59
House #9	27,255.00	13.77	13,920.00	8.32
House #10	19,958.00	16.00	6,271.00	9.23
House #11	39,593.00	20.54	11,283.00	9.88
House #12	<u>13,745.00</u>	<u>7.20</u>	<u>5,216.00</u>	<u>3.57</u>
Average	20,968.75	11.19	9,111.67	6.27

Slab House

1,500 Sq. ft. Attached Garage Electric DF Boiler w/NG Fireplace

Electric water heater SEER 13 AC Air Tightness: 3 ACH Vent: 55% eff.

Design Heating Load-KBtu/Hr Annual Consumption-MMBtu/yr Total Cost Per Year

<u>Base</u>	Tier I	Tier II
30.4	25.8	22
104.7	92	80.2
\$1,715	\$1,507	\$1,318

Basement House

3,750 Sq. ft. Attached Garage Electric DF Boiler w/NG Fireplace

Electric Water Heater SEER 13 AC Air Tightness: 3 ACH Vent: 55% eff.

Design Heating Load-KBtu/hr Annual Consumption-MMBtu/yr Total Cost per year

Base	Tier I	<u>Tier II</u>
40.2	31	25.1
138	112	98
\$2,200	\$1,785	\$1,556

4,000 Sq. ft. Attached Garage Electric DF Boiler w/NG Fireplace

Electric Water Heater SEER 13 AC Air Tightness: 3 ACH Vent: 55% eff.

Design Heating Load-KBtu/Hr Annual Consumption-MMBtu/yr Total Cost Per year

Base	<u>Tier 1</u>	Tier II
42.4	32.7	26.1
145	118.1	102.5
\$2,310	\$1,873	\$1,619

Available Rebates

Prescriptive Standards Performance Standards **Plan Review Completed** Framing Visit Completed Pre-Rock visit Completed **Building Orientation** Drain Water Heat recovery GSHP – Closed Loop GSHP – Open Loop Window Upgrade Balanced ventilator, labeled

Tier I	Tier II	Tier III
\$0	\$800	
\$0	\$500	\$800
\$100		
\$100		
\$100		
\$200		
\$400		
\$200/tor	า	
\$100/tor	า	
\$300		
\$50		

All the Crazy Things

Plans

Simple Things to Avoid

- Bonus Rooms
- o Cantilevers
- Can Lights
- Exterior wall assemblies
- Attic Duct Work
- Vault to flat ceilings

Bonus Rooms

Bonus Rooms

- Avoid Building Bonus Rooms
- Make them cold storage
- If you make it conditioned space, make it accessible from the second floor only
- If that doesn't work keep the stairs out of the garage

Determine the Thermal Enclosure conservation program

Determine the Thermal Enclosure

Determine the Thermal Enclosure

Bonus Room Detail – With Rigid

Bonus Room Detail – With Spray Foam Insulation

Bonus Room - Examples

Bonus Room - Example

Bonus Rooms - Example

Bonus Rooms - Example

Cantilevers

Cantilevers

- Avoid them
- Air Seal
- Insulate
 - Cavity filled
 - Continuous underneath

Cantilevers - Example

Can Lights

- Keep them out of insulated spaces
- Build dropped ceilings or soffits for them
- Build boxes around them
- Good luck

Can Lights

Tubs, Showers, Fireplaces, Stairs, etc.

- Move to interior wall in design stage
- Insulate, vapor barrier/air seal and "rock" before installing framing

Exterior Wall Assemblies

Duct Work in the Attic

Vault to Flat Ceilings

Examples

Examples

Triple E

- Energy Efficiency
- Education
- Evaluation

Thank You