# Solar Ready and Passive Solar in Minnesota

February 27, 2013



Stacy Miller and Rachel Wagner





#### Overview

- Solar energy options
- Solar ready design principles
- Passive solar design principles
- Resources



### **MN Department of Commerce**

- Division of Energy Resources
  - State Energy Office
- Providing sound information for 35+ years on:
  - Energy conservation
  - Energy efficiency
  - Renewable technologies



# Expected life of a building

When you design or build a home, how long will it last?

10 years?100 years?Longer?





# A lot can happen in 100 years!





5

# What does the next 100 years hold?

- Information technology
- Increasing fuel costs
- Electric vehicles
- More Solar!



# Is solar the next big thing?"



#### Re: Electronic Mail (eMail) - A Brief Overview

Recently I have received a number of inquiries into this thing called "eMail." Attached you will find a brief overview of what "eMail" is and what added functionality it can provide to an organization(s). After reviewing the materials please feel free to contact me with any questions.



7

### Solar Adds Value

- A builder can add value by:
  - Building energy efficient homes that save \$\$ for decades
  - Considering environmental impacts
  - Anticipating future technology options and plan for them today!



#### Solar Electricity (Photovoltaics or PV)



Photo Credit: Dennis Schroeder



#### **Solar Hot Water**



Photo credit: Solar Skies



10

#### **Solar Air Heat**



Photo credit: Rural Renewable Energy Alliance



#### Passive Solar Design



Photo credit: Rachel Wagner



### Solar Resource

#### Solar resource varies by:

- Time of day
- Season
- Local Weather
- Local Landscape



Slide credit: Eric Buchanan, UM Morris



#### Solar Resource

#### Is There Shading?

- Are there onsite obstructions
- Shading from adjacent land?
- A resource assessment quantifies the <u>current</u> solar resource profile





### Solar Resource in Minnesota

- Solar is a resource for both urban and rural applications
- The resource varies seasonally by a factor of ~2
- There is <15% difference in solar resource statewide</li>



#### Solar Resource in Minnesota





# **Potential Solar Game Changers**

- Electric Vehicles
- Energy Storage
- Falling price of solar
- Rising conventional fuel costs
- Third party ownership



Today...

- 1,100 installations = 13,000 kW
- 70% residential:15% of capacity
- 30% commercial: 85% of capacity



Photo Credit: Westwood Renewables



- 13 Megawatts
- 1,100 systems
- 70% residential



Photo Credit: Powerfully Green







20

#### Minneapolis Convention Center

- 600 kW capacity
- 3rd largest PV installation
- City of Minneapolis
- Xcel RDF Fund
- Developer:
  - Best Power Int'l





Photo Credit: City of Minneapolis

#### **Cherokee Park United Church**

- 21 kilowatts
- St. Paul, MN



Photo Credit: SunDial Solar; Silicon Energy



#### **Electric Vehicle Readiness**

- 40 Amp service
- 240 Volt outlet
- Conduit and wiring to the parking area



Photo Credit: www.dailycamera.com/boulder-county-news



#### **Electric Vehicle Readiness**

- US Dept. of Energy
- Plug-In Electric
  Vehicle
  Handbook for
  Electrical
  Contractors



Photo Credit: MN Dept. of Natural Resources



- Most versatile end use
- Utility incentives widely available



- Fewer utility incentives
- Small market in MN
- 1897: 1/3 of homes in



Photo Credit: Solar Skies

Pasadena had Solar Water Heating

• 1941: SWH in ½ the homes in FL



26



Photo Credit: Powerfully Green





Photo credit: Applied Energy Innovations



#### Solar Water Heating w/ Space Heat Tie-in



Photo Credit: Conservation Technologies



- Most efficient
- Most shade tolerant





Photo credit: Energy Concepts



Photo credit: Solar Skies

#### **Solar Air Heat**



Photo credit: Rural Renewable Energy Alliance



31

### Solar Air Heat

- Least expensive
- Simple to install
- Easy to maintain







Photos credit: Rural Renewable Energy Alliance



# Solar Ready



# Solar Ready

![](_page_33_Picture_1.jpeg)

![](_page_33_Picture_2.jpeg)

### **Solar Ready-Definition**

Building design and construction that enables straightforward installation of solar energy systems after the building is constructed

![](_page_34_Picture_2.jpeg)

#### **Solar Ready Design Principles**

- 1. Orient and Design for solar benefit
- 2. Plan STRUCTURE for future solar equipment
- 3. Plan SPACE for future solar equipment
- 4. Make product and location choices to accommodate future solar equipment
- 5. Design for minimal building energy loads!

![](_page_35_Picture_6.jpeg)

#### Solar-Oriented Design

#### FACTORS

- Seasons
- Spaces
- Views
- Wind
- Overhangs
- Glare
- Heat Gain
- Heat Loss
- Adjacent features

ENERinfo

www.gov.ns.ca/natr/meb/energy.htm

![](_page_36_Figure_13.jpeg)

# Solar Ready Structure

Elements that can support solar:

- Window overhangs
- Deck railings
- Walls
- Roofs

![](_page_37_Picture_6.jpeg)

Photo courtesy Mike LeBeau, Conservation Technologies

![](_page_37_Picture_8.jpeg)

38

Allowable load calculated by an engineer

A single plane facing south

![](_page_38_Picture_3.jpeg)

Allowable load calculated by an engineer

- A single plane facing south
- A steep pitch to shed snow and capture sunlight
  - Latitude or rule of thumb 10:12 12:12

![](_page_39_Picture_5.jpeg)

#### Allowable load calculated by an engineer

- A single plane facing south
- A steep pitch to shed snow and capture sunlight
  - Latitude or rule of thumb 10:12 12:12
- No roof vents, dormers, chimneys or obstructions that will shade the array

![](_page_40_Picture_6.jpeg)

#### Allowable load calculated by an engineer

- A single plane facing south
- A steep pitch to shed snow and capture sunlight
  - Latitude or rule of thumb 10:12 12:12
- No roof vents, dormers, chimneys or obstructions that will shade the array
- Unshaded by trees or nearby buildings
  - Minimum 60' clear to anything 20' taller than roof

![](_page_41_Picture_8.jpeg)

# Solar Ready Mechanical Room

#### Leave Space for SWH Equipment

- Mechanical room (min. 100 ft2)
- SWH tanks can be quite large
  - 30" 48" in diameter
  - 48" 90" tall

![](_page_42_Picture_6.jpeg)

![](_page_42_Picture_7.jpeg)

# Solar Ready Space

#### Chases

- Solar hot water needs space for insulated piping
- Create a path from mechanical space to attic for Solar Hot Water
- Have access to the space for later work

![](_page_43_Picture_5.jpeg)

# Solar Ready Space

#### Electrical for solar electric

- PV: run ¾" flexible conduit from attic to terminate near electrical panel
- 2" diam. sleeve through the wall or rim
- Access to electrical panel

![](_page_44_Picture_5.jpeg)

Photo credit: Silicon Energy and Blue Horizon

![](_page_44_Picture_7.jpeg)

# Solar Ready Equipment

#### Plumbing

- There are solar-ready water heaters
- "Solar control module" kit
  - an add-on for a tank water heater
- Plan for building penetrations

![](_page_45_Picture_6.jpeg)

# Solar Ready Equipment

Heating

- Hydronic systems are most adaptable
- Boiler can accommodate solar hot water

![](_page_46_Picture_4.jpeg)

## Design for low energy loads

![](_page_47_Figure_1.jpeg)

![](_page_47_Picture_2.jpeg)

#### **Passive Solar Design**

![](_page_48_Picture_1.jpeg)

Building form, space plan and construction methods let the sun contribute desired heat, light, and ventilation.

Uses no equipment; very cost effective

![](_page_48_Picture_4.jpeg)

49

#### Face it south--or nearly so

![](_page_49_Picture_1.jpeg)

**Considerations:** Site constraints

Building constraints

Geometric constraints

Existing obstacles

Photo credit: Rachel Wagner

#### **Orient within 30 degrees of south**

![](_page_49_Picture_8.jpeg)

#### Passive Solar Design Principles

![](_page_50_Picture_1.jpeg)

- South-facing building facade, within 30 degrees
- Solar-oriented space planning
- Design for super insulated shell
- Window shading & cross ventilation
- Proper window glazing selection
- Design for daylight

![](_page_50_Picture_8.jpeg)

# Solar-oriented space planning

Ν

![](_page_51_Picture_1.jpeg)

- Daytime spaces south
- Evening spaces west
- Utility spaces north
- Open plan

![](_page_51_Figure_6.jpeg)

#### Solar-oriented space planning

![](_page_52_Picture_1.jpeg)

- Favor open floor plan with living areas to the south
- Allow heat to circulate throughout the living areas

![](_page_52_Picture_4.jpeg)

#### Windows are the Key to Comfort

![](_page_53_Picture_1.jpeg)

![](_page_53_Picture_2.jpeg)

- Limited direct sun in summer months
- Ample direct sun in winter months
- Roof overhangs = shading

![](_page_53_Picture_6.jpeg)

# Solar-designed overhangs

OVERHANGS allow south windows to admit lower altitude winter sun while shading higher summer sun

Know your solar altitude

www.esrl.noaa.gov/gmd/grad/solcalc/

Solar altitude in Duluth:

Dec. 21 = 19.5 degrees

Jan. 21 = 23

June 21 = 66.5

![](_page_54_Figure_8.jpeg)

http://www.nesea.org/buildings/passive.html

![](_page_54_Picture_10.jpeg)

#### Solar-designed overhangs

![](_page_55_Picture_1.jpeg)

![](_page_55_Picture_2.jpeg)

Many options:

- Integral Roof Overhangs
- Trellis or pergola elements
- Sun-shades (awnings)
- Decks

![](_page_55_Picture_8.jpeg)

56

#### Window glazing for solar gain

- Calculated south facing glass: usually 9-12% of floor area
- High SHGC > 0.4
- Low U-value < 0.3</li>
- Usually, in our climate, triple pane glazing
- Be careful with westfacing glass

![](_page_56_Picture_6.jpeg)

![](_page_56_Picture_7.jpeg)

#### Light and comfort from the sun

![](_page_57_Picture_1.jpeg)

![](_page_57_Picture_2.jpeg)

![](_page_57_Picture_3.jpeg)

Designed for natural daylight Reduced use of artificial lighting Proper shading & cross ventilation eliminate need for AC

![](_page_57_Picture_5.jpeg)

# Solar-Integrated Design

![](_page_58_Picture_1.jpeg)

Brought to you (in this house) by the SUN: Space Heat....Light....Ventilation....Electricity....Hot Water

Using what the SUN can provide

![](_page_58_Picture_4.jpeg)

![](_page_58_Picture_5.jpeg)

59

# Solar Manufacturing in MN

- Rural Renewable Energy Alliance, Pine River
- Solar Skies, Alexandria
- tenKsolar, Bloomington
- Silicon Energy, Mountain Iron
- SolarPod, Eagan
- And others (3M, Silent Power, Back Up Power Systems, Despatch, Northfield Automation, Cardinal Glass, etc...)

![](_page_59_Picture_7.jpeg)

### **MN Solar Ready Resources**

#### 1. Solar Ready Building Design Guidelines

mn.gov/commerce/energy/images/Solar-Ready-Building.pdf

#### 2. Solar Ready Construction Specification Report mn.gov/commerce/energy/images/Solar-Ready-Construction.pdf

#### Solar Ready Building Design Guidelines

Solar Ready Building Design Guidelines for the Twin Cities, Minnesota

![](_page_60_Picture_7.jpeg)

61

# Solar Ready Resources from ENERGY STAR

1. <u>ENERGY STAR Solar Ready</u> <u>Photovoltaic (PV)</u> <u>Specification</u>

2. <u>Solar Water Heating (SWH)</u> <u>Specification</u>

![](_page_61_Picture_3.jpeg)

62

#### **Questions?**

Stacy Miller (651) 282-5091 Rachel Wagner (218) 733-0690

![](_page_62_Picture_2.jpeg)

![](_page_62_Picture_3.jpeg)