Project Overcoat: Moving Exterior Insulation to Existing Homes

Energy Design Conference February 27, 2013

Patrick H. Huelman
Cold Climate Housing Coordinator
University of Minnesota Extension

Prologue: Brief Introduction to Building America

Act 1: Moving Towards High-Performance Homes

 Act 2: ETMMS (Exterior Thermal & Moisture Management System)

Act 3: Project Overcoat for Existing Homes

Building Technologies Program

Building America National Renewable Energy Lab

Introduction to Building America

- Focus is to reduce energy use by 50% in new houses and 30% in existing residential buildings.
- Promote building science solutions using a systems engineering and integrated design approach.
- "Do no harm" => we must ensure that safety, health, and durability are maintained or improved.
- Accelerate the adoption of high-performance technologies.

Industry Research Teams

 Exploring the next generation of high performance homes for cold climates, using

- building science as our compass
- research as our guide
- Taking a total systems approach
 - House (physical) system
 - Construction delivery system
 - Market (consumer-user) system

- Research and deployment of a whole-house, systems engineered, integrated design approach to select the least cost and highest value features including:
 - Climate-specific designs
 - Highly-efficient walls, foundations, roofs
 - Super-efficient windows & doors
 - Passive solar space & water heating
 - State-of-the-art heating & cooling systems
 - Advanced hot water, appliances, lighting
 - Solar thermal and solar electric systems
 - Moisture resistant construction
 - Healthy indoor air

- Research Team Lead: University of Minnesota
 - Cold Climate Housing Program Pat Huelman
 - Center for Sustainable Building Research John Carmody
- Research Team Partners
 - Center for Energy and Environment David Bohac
 - Building Knowledge, Inc. Ed VonThoma
 - Energy Center of Wisconsin Dan Cautley

University Research Partners

- Advanced Building Systems Group (BBE)
- Initiative for Sustainable Enterprise (IonE/IREE)
- Energy Systems Design Program (BBE)
- Mechanical Engineering (CSE)
- Clean Energy Resource Teams (CFANS)
- Natural Resource Research Institute (UM-D)

University Support

- College of Food, Agricultural & Natural Resource Sciences
- Initiative for Renewable Energy and Environment
- University of Minnesota Extension

External Research Partners

- Building Green
- Conservation Technologies
- Hunt Utilities Group
- McGregor Pearce
- Verified Green
- Wagner Zaun Architecture

Building Enclosure

- CertainTeed
- DuPont Building Innovations
- Johns Manville
- BASF
- Dow

Windows and Fenestration

- Andersen Corporation
- Cardinal Corporation
- Marvin Windows and Doors

Mechanical Systems

- AIM
- A.O. Smith
- Panasonic
- RenewAire
- Venmar Ventilation

Builders/Remodelers/Suppliers

- Christian Builders
- JET Construction & Remodeling
- Lumber Dealers Supply
- Nor-Son Construction
- Northway Construction
- TDS Custom Construction
- Thompson Homes
- Wausau Supply Company
- Cobblestone Homes
- Amaris Custom Homes
- Cocoon Home Performance Solutions
- Lambert Lumber

Professional/Community

- MN Office of Energy Security
- NARI

Current Research Portfolio

- Foundation Insulation Systems
 - Full-scale testing of interior systems at the CRRF
 - Exploring innovative retrofit options for masonry
- Project Overcoat
 - Exterior insulation systems focused on airtightness of 1-1/2 story roof applications
- Integrated Space & Water Heating Systems
 - In-situ monitoring in WX homes

- Future Research Plans
 - Integrated Space & Water Heating
 - Laboratory optimization
 - Project Overcoat
 - Cost reduction (materials & labor)
 - Foundation Insulation for Existing Homes
 - Testing insulation system performance at the CRRF
 - Demonstrate "excavationless" method for exterior retrofit
 - Simplified Test Method for Combustion Safety

Act 1: Moving Towards High-Performance Homes

- Robust vs. Fragile
 - The demands of high-performance homes
- The X-Factor
 - The critical role of execution
- Evolution vs. Revolution
 - A path a forward

 We must ensure our high-performance houses meet our expectations today and into the future?

- High-performance houses will push the envelope (mechanical systems, occupants, etc).
 - This will require more robust designs.
 - It will demand systems with forgiveness/tolerance.
 - We must have a more predictable delivery system.
 - The owners/occupants will need to be in the loop.

Robust

- Strong, healthy, and hardy in constitution
- Built, constructed, or designed to be sturdy, durable, or hard-wearing
- A system that is able to recover from unexpected conditions during operation
- Things that simply seem to work regardless what your subs, nature, or client throw at them!

- Fragile
 - Easily broken; not having a strong structure
 - Unlikely to withstand severe stresses and strains

 Things that make perfect sense on paper, but seem to be "too fickle" to handle the real life situations they encounter.

- When push comes to shove, will your home's response be one of robustness or fragility?
 - Climate extremes
 - Abnormal interior conditions
 - Execution errors
 - Unusual operations
 - Neglected maintenance

- Can it be evolution or must it be revolution?
 - It seems that small incremental steps (evolution) got us in this predicament
 - And bigger, bolder steps (revolution) might be needed to get us back out!

Evolution or Revolution?

- We need high-performance homes now!
- But it will demand a new approach. We must ...
 - design and engineer (not just build) our homes.
 - build forgiveness/tolerance into all systems.
 - build redundancy into critical materials.
 - or make it easy to repair and/or replace key components
 - develop a more predictable delivery system.
 - provide continuous feedback to the occupant.

Act 2: Intro to ETMMS

(Exterior Thermal & Moisture Management System)

- Thinking Outside the Box
 - A new look at an old approach

Several examples in new construction

Where do the structural components belong?

- You have 5 choices
 - Outside
 - Both sides
 - Middle
 - In-between
 - Inside
- What if your structural materials
 - Change dimensionally with temperature / humidity and
 - Are subject to deterioration, if kept moist over time?

Where do the moisture control layer(s) belong?

 In a heated and air-conditioned building with air and vapor permeable cavity insulation, where do the moisture control layers belong?

- You have 4 choices
 - Outside
 - Inside
 - Both sides
 - Middle

Two-Sided vs. One-Sided Walls

- Is it possible to use a single material in a single plane as the air barrier, vapor retarder, and moisture barrier (or WRB)?
 - Absolutely
 - And with the right material selections, it can be a universal wall for all climates.

A Better Way to Build

- Step 1: Put the structure on the inside
 - Light-frame construction
 - Timber frame
 - Concrete masonry
 - SEP = Structural Engineered Panel (studless construction)

A Better Way to Build

- Step 2: Put the thermal and moisture control layers on the outside.
 - PERSIST (Makepeace)
 - REMOTE (Alaskans)
 - PERFORM (Texans)
 - Out-sulation (???)
 - Perfect Wall
 - (Lstiburek, w/ credit to bright Canadians in CBD)
 - Exterior Thermal & Moisture Management System

First ETMMS Project: 25 Unit Townhouse Complex

SEP-ETMMS Four House Study

- Goals of House One Pilot
 - Healthy
 - Affordable
 - Durable
 - Energy efficient
 - Socially and culturally responsive
 - Design excellence

ETMMS: Foundation, Walls, & Roof

- Build the entire structure;
 - foundation, floor systems, walls, and roof
- Wrap the entire envelope with a "peel & stick" membrane integrated with openings / penetrations
- Add rigid foam insulation
 - 2 to 3" on foundation
 - 3 to 4" on walls
 - 6 to 8" on the roof
- Add furring strips, overhangs, etc.
- Install trim; siding; roof sheathing and roofing

House 2

New Technology – Old Look

House 3

House 4

House Tightness Testing @ 50 PA

	cfm	ACH	cfm/sf
House One:House Two:		0.90 1.25	0.12
• House Three:	145	0.45	0.08
 House Four 	259	0.70	0.21

Current Outcomes

- Houses perform extremely well
- Houses are very tight,
 - reduced heat loss/gain; limited condensation risk
- House are well-ventilated
- Low energy consumption
- The system shows great potential for high wind loads and seismic resistance.
- Designs are efficient, appealing, and well-received
- The SEP-ETMMS can be built in any climate.

Current Costs

- After three houses, costs were about 12% higher than conventional construction
 - research houses have high performance systems.
 - House Four was 8% higher with prevailing wage and double-layer wall.
- Lumber costs are much lower
- Membrane and insulation cost are much higher
- Labor is higher, but improving
 - House Four cost for labor was much lower
- Operational costs are lower
- Maintenance costs should be lower

Current Challenges

- Reduce costs
 - labor costs will decrease with improved technology and construction methodology
- Improve HVAC system
 - fewer choices for small, very efficient houses
 - must simultaneously address make-up air issues
- Increase off-site component manufacturing

Act 3: Project Overcoat

- Moving Exterior Insulation to Existing Homes
 - Potential application to existing homes

Challenges & opportunities

Current focus on 1-1/2 story houses

New vs. Existing Homes

It is apples and tofu!

- While the technologies may look similar, they are fundamentally ...
 - Different problems
 - Different strategies
 - Different delivery systems
 - Different economics
 - Different market interface

New vs. Existing Homes

ETTMS: Application to Retrofit

- Performance Potential is Clearly There!
 - You can have your cake and eat it, too
 - increase energy efficiency
 - while enhancing building durability
- Most work can be completed from the outside
- However, you must take care of mechanicals
 - Sealed combustion
 - Mechanical ventilation
 - Pressure management

ETTMS: Application to Retrofit

- Sizing up the potential
 - What fraction of our existing homes with limited wall insulation are good candidates?
 - What fraction of those homes will have good access around the entire exterior perimeter?
 - stoops, garages, patios, decks, meters, etc.

- Low Hanging Fruit
 - Simple house shapes with limited overhangs
 - Homes with good exterior access
 - detached garages with limited patios and decks
 - Homes with nice interior finishes
 - Homes in need of
 - siding, roof, and windows

- Poor Candidates
 - Exterior is too complex
 - Pre-existing moisture has caused serious mold issues in structural cavities
 - Bad attic conditions

- Wet foundation (especially crawl space)
 - unless that can be fixed a the same time

- Walls versus Walls + Roof
 - Walls-only is seductive
 - connection at top is not easy
 - house becomes a chimney
 - must address attic air seal
 - For many homes the attic/roof is a bigger problem than the walls
 - 1-1/2 story walk-up attics
 - especially finished

- Current NorthernSTAR BA Research
 - Roof only

Focus on 1-1/2 story homes

Particularly those with recurring ice dam issues

Anatomy of an Ice Dam

Roof Geometry

Market Potential

- Blower Door Results
 - Pre = 2925 cfm @ 50Pa
 - Mid 1 = 2774 cfm @ 50Pa
 - Mid 2 = 1607 cfm @50 Pa
 - Final = ???

World Class Research...

101 | Building America eere.energy.gov

Project Overcoat: Moving Exterior Insulation to Existing Homes

Questions?

- Contact Information
 - Patrick H. Huelman
 - 203 Kaufert Lab; 2004 Folwell Ave.
 - St. Paul, MN 55108
 - **-** 612-624-1286
 - phuelman@umn.edu

