Department of Energy

The CATALYST is the basis for the inclusion of RTU retrofit in the recently announced ADVANCED RTU CAMPAIGN

www.advancedrtu.org

Patented 2011

WHAT IS ENERFIT?

Enerfit is a patented retrofit system for single zone HVAC units.

Using a customized set of hardware, controls and logic, it dynamically scales the electrical and mechanical capacity of generally oversized HVAC units to yield massive energy savings and increase user comfort.

ENERFIT what's in the box?

ENERFIT COMPONENTS

Enerfit Controller

VFD (Variable Frequency Drive)

Enerfit Face Damper

(Used with face split DX Coils)

ENERFIT COMES IN 3 DIFFERENT VERSIONS:

VERSION 1 (V1) operates in conjunction with your existing HVAC unit controls or thermostat.

It monitors heating and cooling calls from the unit controller or thermostat and integrates them into the Enerfit control logic.

VERSION 2 (V2) is a complete direct digital control system. It can operate as a standalone controller for your unit or as open-protocol BACnet HVAC unit controller.

Version 2 can operate in conjunction with the factory RTU controls or replace them entirely (V2 BACdrop).

VERSION 3 (V3) works with chilled water systems and allows installers to use the same board, plugs and service tools that work with the DX rooftop & split systems.

ENERFIT COMES IN 3 DIFFERENT VERSIONS:

ENERFIT VERSION 1 (V1)

Enerfit V1 works with your EXISTING control system.

The standard V1 Enerfit Retrofit Kit includes:

- The Enerfit Controller specifically pre-programmed for your unit.
- Variable Frequency Drive (VFD) specifically pre-programmed for your unit.
- All standard sensors plus custom options including DCV (Demand Control Ventilation)
- Custom evaporator coil face dampers where required.
- All cables come from the factory color-coded, labeled, and with pre-terminated plugs on the controller end (and terminated on the device end whenever possible).
- Pre-laminated custom wiring diagrams designed for quick and clear installation and troubleshooting.
- All controllers, onboard relays and cables are pre-tested at the Enerfit factory before shipping.
- Compatible with Enerfit EMT.

ENERFIT COMES IN 3 DIFFERENT VERSIONS:

Enerfit V2 is a complete direct digital controller that can replace and unify obsolete, poorly working or disparate controls.

While V2 can pay back aggressively through energy savings, the hardware required for a full control system replacement is already present. Upgrading it to replace your existing controller comes at a minimal cost, which is now paid back by the energy savings.

Also - because it is open-protocol BACnet, Enerfit can be integrated into any front-end controller with BACnet capabilities or with a BACnet translator.

As such, it is a valuable upgrade for customers interested in operations management and monitoring tools like SkySpark, Tridium or similar products that give facility managers a real-time dashboard of fault detection and energy consumption.

Units with formerly standalone controllers (or obsolete network controllers) can now feed real time data on dozens of points that can proactively detect faults and give service personnel advance warning of impending problems.

ENERFIT FACE DAMPER

Enerfit addresses the differences in the two primary evaporator coil circuiting schemes:

INTERLACED & FACE-SPLIT

FRONT/BACK VIEW SIDE VIEV

EVAPORATOR COILS: FACE-SPLIT

ENERFIT: what does it do?

IMPROVES COMFORT

- Passive dehumidification
- Reduces drafts
- Reduces air noise
- Controls CO² levels

ENERFIT: what does it do? CASE STUDY: SPACE RELATIVE HUMIDITY

ENERFIT: what does it do?

REDUCES MAINTENANCE COSTS

- Reduces belt wear & tightening frequency
- Extends lubrication intervals
- Lowers filter change frequency

ENERFIT: what does it do?

EXTENDS UNIT LIFE

- Eliminates starting torque on fan and motor bearings
- Improves compressor motor cooling
- VFD adds safety protection for entire unit

ENERFIT how do you service it?

Synb	ela: 🛊 (anting On 🛦 Heating On 🎉 Fan (in	of Net Au
•	Ren	Description	945
1	FRN	Fan Status	On / 0
2	SFR	Supply Fan Amps	Amps
3	SPO	SF VFD Speed Signal	Hz
4	0.1	Stage 1 Cooling	On / 0
5	513	Stage 2 Cooling	On / 0
6	0.3	Stage 3 Cooling	On / 0
7	HP1	Stage 1 Heat	On / Of
8	H2	Stage 2 Heat	On / 01
	ECn	Economizer Enabled	On / Off
10	Ef	Exhaust Fan Status	On / Off
	R	Room Temperature	k
1	2 SPC	Room Temp Setpoint	*7
1	3 LR	Cooling Coll Leaving Temp	*
	4 58	A/C Unit Supply Air Temp	*
1	5 91	Circ # 1 Suction Pressure	PSI
	16 592	Circ # 2 Suction Pressure	PSI
	17 99	Circ # 3 Suction Pressure	PSI
- 1	18 594	Circ # 4 Suction Pressure	P3I
	19 df1	Coll Face Damper 1 Feedba	the Open
	20 012	Coll Face Damper 2 reedow	N. Open
	21 051	Feedba Signal to Face Demper 3	% Open
	22 050	Output to DA Damper	% Open
	24 8	Alarm Code	1-10
	10		7

ENERFIT EMT (ENERFIT MONITORING TOOL)

Every job site comes standard with an EMT.

It was designed to be a quick and simple way to find out what's going on not only with Enerfit - but also the unit in real time.

Connecting an EMT should be the first step to troubleshooting any Enerfit installation. It connects to the Enerfit controller and gives read-only access to over 20 different control points and alarm codes.

ENERFIT EMT (ENERFIT MONITORING TOOL)

It connects to the Controller Enclosure and does not require the technician to unscrew the controller lid.

EXTERNAL RJ45 JACK

Cav Frediat

		· second on the meaning for	🛠 Fan On 🛛 rH Not Available
	Res	Description	
1	FRN	Fan Status	00/0#
2	SfR	Supply Fan Amps	Amor
3	SPd	SF VFD Speed Signal	Amps
4	CL1	Stage 1 Cooling	00/04
5	513	Stage 2 Cooling	00/06
6	613	Stage 3 Cooling	00/0#
7	Ht1	Stage 1 Heat	0n/0ff
ð	Hta	Stage 2 Heat	00/0#
y.	ELN	Economizer Enabled	UIT UIT

Point Details and Units are printed on back of EMT lid flap for easy reference.

SUMMARY: HOW DOES ENERFIT REDUCE OPERATING COSTS?

Improves comfort Reduces maintenance cost Extends the life of your unit Reduces HVAC operating cost

SUMMARY: HOW DOES ENERFIT REDUCE OPERATING COSTS?

EXAMPLE: TYPICAL 20 TON ROOFTOP UNIT

WITHOUT ENERFIT (PER ANSI/AHRI STANDARDS)	WITH ENERFIT (PER ANSI/AHRI STANDARDS)	WITH ENERFIT (ACTUAL OPERATION)			
10.7 EER	10.7 EER	11.2 EER			
11.7 IEER	14.4 IEER	16.5 IEER			
Room conditions = 75°F & 55% RH	Room conditions = 75°F & 55% RH	Room conditions = 75°F & 43% RH			

Burlington Electric and Efficiency Vermont Find Digi-RTU™ Reduces Energy by an Average of 67%

Vermont Energy Investment Corporation, located in Burlington, Vermont reported metered and calculated electrical savings of 65% using the Digi-RTU developed by Bes-Tech. Vermont Country Store; located in North Clarendon, Vermont reported metered and calculated electrical savings of 68% using the Digi-RTU developed by Bes-Tech.

READ THE FULL RELEASE HERE

Click Here

The Digi-RTU by Bes-Tech is the most innovative product on the market. The benefits of using the Digi-RTU

REDUCE ENERGY CONSUMPTION AND DEMAND BY UP TO 65%

Burlington Electric and Efficiency Vermont Find Digi-RTUTM Reduces Emergy by an Average of 67%

Fermont Energy Investment Corporation, located in Burlington, Vermont reported metered and calculated electrical surings of 65% using the Digs-RTU developed by Bar-Tack. Vermont Country Bore, located in North Clarendon, Vermont reported metered and calculated electrical surings of 65% using the Digs-RTU developed by Bar-Teck.

Omaha, NE (2007ED) J accury 07, 2014 -- Bea Tech, developer of the Digi-RTU, the most incorrective and memory efficient effermatics roothup NV AC and control package on the matics, announce electrical energy seringe of 65% and 61% using an independent energy study by Efficiency V emont, with additional funding support contributed by the Buckington Electric Department.

Buillagion Electric patterned with a local contextor and Tennost Energy lowestmest Corporation, a tenant in a 51,000 space foot office buildinglocated in Buillaugtor, Tennost. The study reactar reported metwork and calculated studied and galaxies.

Efficiency V erm out partnered with a local runk where and V erm out Country Store, a 170,000 equare foot stall distribution context located in North Chaendon, V ermont. The study results reported in stared and calculated stortical scenary of 63%.

For each building, one configuration was metered for two weeks before the Digi-RTU was installed and metered for two weeks after the Digi-RTU was installed. <u>Measurement and venforthon</u> with these as well as analysis were an anaged by Efficiency Personal.

The <u>DigiteTI</u>, whose of the 2011 American Public Power Americation's DEED Energy Important Award, in the most innovative and energy efficient routing NVAC unit control pulsage on the market. The DigiteTI has a proven text second of reducing energy contamption and demand by up to 65% with a typical ROI of 1 to 3 years. The DigiteTI is a simple plane nerve solution for existing RUU which allows balaking owners to increase efficiency of older mofles quark without the exposure of replacing them.

Reduced electricity consumption up to 65%
 Reduced neals electricity demand sector 61%

The Digi-RTU by Bes-Tech is the most innovative product on the market. The benefits of using the Digi-RTU

For Utility Companies:

Lower peak system demand up to 65%

Reduce kWh usage up to 65% Decrease carbon emissions

For Building Owners and Tenants:

Reduce electricity consumption and costs Reduce compressor on/off cycling up to 75%, reduces maintenance cost

Better maintains space humidity and temperature Reduces HVAC equipment noise in occupied space

Facility Information

Location:	Madison,	VVI •	Annual HVAC Availability:	8760	hours per year
Total RTU tonnage:	10	tons	Weekly HVAC Availability*:	168	hours per week
				(Enter 168	unless HVAC system is completely shut

Utility Information

Incentive Information

Peak Demand Savings Incentive: 0 per kW

kWh Saving Incentive: 0 per kWh

VSD Incentive: 50 per HP

off at night or on the weekends.)

Equipment Information

RTU Size (tons)	Quantity	Supply Fan Operation	Voltage & Phase	Optimizer Size (tons)	Model
10	1	On ▼	208/3 🔻	10	RTU 3P 2000 208
		Auto 🔻	208/1 •		
		Auto 🔻	208/1 •		
		Auto 🔻	208/1 •		
		Auto 🔻	208/1 •		

Results

Annual Estimated Electricity Savings		Incentiv	/0	Equipment Cost		
Consumption:	16,536 kWh	kWh:	\$0.00	Optimizer:	\$4,495.05	
Demand:	4.60 kW	kW:	\$0.00	Installation (estimated):	\$800.00	
Utility Cost Reduction:	\$1,653.60 (\$165.4 / ton)	VSD:	\$-1000.00	Total:	\$5,295.05 (\$529.5 / ton)	
5-yr Return:	\$9,137.18	Total:	\$1,000.00	Total (with incentive):	\$4,295.05 (\$429.5 / ton)	
10 vr Return:	\$20 798 80					

Project Simple Payback 2.6 years

Digi-RTU™ Pricing and Savings Estimator

Location:

50 Floor area: **HVAC Operation Hours:** Building occupancy Hours Total RTU tonnage: Utility Info Electricity rate: \$0.0 Recommended electricity rate: \$0. \$0.7 Gas rate: \$0.7 Recommended gas rate: *Enter your known gas rate Incentive Inf Peak Demand Savings Incentive: \$ 10 \$ kWh Saving Incentive: VSD Incentive: Ś Annual Estimated Utility Savings Electricity consumption 223, 39. Demand 1,1 Gas consumption Utility Cost Reduction \$ 20. **Carbon Reduction**

Facility Information

Phoenix A7

	o enny ra										
),000	square foot						Equipment Int	formation			
168	hours per week	RTU Size		Heating	Supply Fan	Voltage		CO2 DCV	Communication	Digi-RTU	
90	hours per week	(tons)	Quantity	Type	Operation	& Phase	Economizer	Option	Option	Size (tons)	Digi-RTU Model
85	tons	15	5	Gas	On	208/3	No	No	T-Stat	15	DRB-0-300-2-12
		5	2	Gas	On	208/3	No	No	T-Stat	5	DRB-0-100-2-12
rmat	ion									0	
895	per kWh									0	
0895	per kWh									0	
500	per therm									0	
500	per therm									0	
										0	
orm	ation									0	
0.00	per kW									0	
-	per kWh	-			•						
-	per HP			Incentive					Equipment Cost		
			kWh	\$-				Digi-RTU	\$ 34,665		
			kW	\$ 3,910				Installation	\$ 2,100		
585	kWh		VSD	\$-				Total	\$ 36,765	(\$ 433 / ton)	
10	kW		Total	\$ 3,910			Total (with incentive)	\$ 32,855	(\$ 387 / ton)	
19	therm										
850	(\$ 245.3 / ton)										
154	ton						Project S	imple Pavback	1.6	vears	

*Qualifies for EPACT Federal Tax Incentives

D.O.E EPACT Estimated Tax Incentive Value

Your Energy Savings With Digi-RTU Control Package

Customer Information:

Building Information:

Ajusted ROI

1.1

years

\$9,180

Operating Costs and ROI

Annual Utility Consumption (kWh)

Demand Reduction (kW)

Carbon Emissions (Tons)

Off-the-Shelf, Non-DDC Solutions

- W7220A1000 JADE economizer controller
- MS3105J3030 economizer actuator, spring return, 44 lb-in torque (smaller 27 in-lb size available when needed)
- C7400S1000 outside air temp & hum sensor
- C7400S1000 return air temp & hum sensor
- C7250A1001 mixed air temp sensor
- C7232A1016 wall-mounted CO2 sensor w/o LCD
- TH8320R1003 VisionPRO commercial programmable stat w/ economizer occupancy interlock
- THM6000R1002 optional internet gateway for above stat
- HVFDSD3C0030G100 3hp, 480v, SmartVFD... sizes, voltage, model #, and costs will vary for each existing RTU, 3 to 10hp which should take care of 7.5 to 25 tons
- (4) DPDT relays

About \$1,900 for a 10 ton RTU

Compressor Capacity Control

Average Monthly Temperature for Chicago, IL

Average Monthly Temperature for Madison, WI

Average Monthly Temperature for South Bend, IN

Capacity Control Options for DX RTUs

- On/Off single fixed speed compressor
- Multiple, staged compressors
 - Saves energy
 - Improves humidity control
 - Cannot be retrofitted

Unloaders

- Reciprocating compressors only
- Saves some energy
- Improves humidity control
- Can be easily retro-fitted
- Pressure unloaders vs. electric unloaders

Hot Gas Bypass (HGB)

- Improves humidity control
- Can be retro-fitted

APR Control – Rawal Devices

- Improves humidity control
- Can be retro-fitted
- Uses about 12% less energy than standard HGBP

Copeland Digital Scroll

- Modulates compressor capacity output from 10 to 100%
- Improves humidity control
- Can be retro-fitted, but not easily
- Uses about 30% less annual energy than standard HGBP

Variable Speed

- Scroll, rotary, screw, or centrifugal type compressors
- Modulates compressor capacity output from 20 to 100%
- Improves humidity control
- Can be retro-fitted, but not easily
- May use less energy than Digital Scroll

Final Thoughts & Additional Resources

Job Information		Equipment Information					
Job Title	Illinois Example		Baseline		Proposed		
Job Type:	Penlesement -	Unit Description:	Unit 1		Unit	2	
Sob Type.		Equipment Type:	Cooling with Gas Heat	•	Cooling with Gas	Heat 👻	
Notes:		Model:	User-Defined	-	48LC	•	
		Size:		•	E012 (Medium He	eat) 💌	
		Refrigerant:	R-22	•	R-410a	•	
		Age (yrs):	15 Yea	rs			
-Location Information		Nominal Cooling Capacity:	10.0 Ton	s	10.0	Tons	
Region:	U.S.A.	AHRI Cooling Rating:	8.70 EE	R 🔻	13.00	EER 💌	
Location:	Illinois	Capacity Control:	1-Stage	•	3-Stage	•	
City	Chieses IAB	Heating Capacity:	184.0 MBH	ł	184.0	MBH	
City.		AHRI Heating Rating:	Со	P 🔻		COP 🚽	
-Building Information-		Heating Efficiency:	80 %		82	%	
Building Type:	Office	Indoor Fan Power:	User-Defined 💌 3	.70 BHP	Med. Static, 3Pt -	3.70 BHP	
		Indoor Fan Control:	1-Speed	•	3-Speed	•	
Unit Peak Cig Load:	10.0 1005	Economizer:					
		Energy Recovery:			\checkmark		
Energy Prices		DCV (CO2) Control:					
Input Data:	Illinois - EIA	Purchase Cost (\$):		0		0	
Electric Price (Avg):	0.08640 \$/kWh	Installation Cost (\$):		0		0	
Coo Bries (Aug):		Ann. Maint. + Repair (\$/yr):		0		0	
Gas Price (Avg).	8.14000 \$/MCF	Downtime Loss (\$/yr.)		0			

Job Title: Illinois Example

Job Type: Replacement

Notes:

Key Results

Energy Cost Savings over 5 years:	\$8,358
Maintenance, Repair, Downtime, Refrig. Savings over 5 years:	\$40
Total Savings over 5 years:	\$8,398
Annual Energy Cost Savings:	\$1,672 (62%)

Energy Cost Savings

Criteria	Unit 1 (\$)	Unit 2 (\$)	Energy Savings (\$)	Percent Savings (%)
Indoor Fan	\$1,376	\$568	\$809	59%
Cooling Electric	\$773	\$185	\$588	76%
Heating Electric	na	na	na	na
Heating Natural Gas	\$539	\$264	\$275	51%
Annual Energy Costs	\$2,688	\$1,017	\$1,672	62%

Job Information			Equipment Information	Dagali			Dropo	aad
Job Title:	Madison Example			Baseli	ne		Ртороз	seu
Job Type:	Deplessment		Unit Description:	Unit	1		Unit	2
Job Type.	Replacement		Equipment Type:	Cooling with Gas	Heat	•	Cooling with Gas	Heat 💌
Notes:			Model:	User-Defined		•	48LC	-
			Size:			•	E012 (Medium H	eat) 💌
			Refrigerant:	R-22		•	R-410a	•
			Age (yrs):	15	Years			1
Location Information —			Nominal Cooling Capacity:	10.0	Tons		10.0	Tons
Region:	U.S.A.	-	AHRI Cooling Rating:	8.70	EER	•	13.00	EER 💌
Location:	Wisconsin	-	Capacity Control:	1-Stage		•	3-Stage	-
Cibr	Madiaan		Heating Capacity:	184.0	MBH		184.0	MBH
City.	Imadison	<u> </u>	AHRI Heating Rating:		COP	-		COP 👻
Building Information			Heating Efficiency:	80	%		82	%
Building Type:	Office	-	Indoor Fan Power:	User-Defined -	3.70 B	HP	Med. Static, 3Pr	• 3.70 BHP
	, 	_	Indoor Fan Control:	1-Speed		•	3-Speed	•
Unit Peak Clg Load:	10.0 Tons		Economizer:				V	
			Energy Recovery:				V	
Energy Prices			DCV (CO2) Control:				V	
Input Data:	Wisconsin - EIA	•	Purchase Cost (\$):			0		0
Electric Price (Avg):	0.10420 \$/kWh		Installation Cost (\$):			0		0
			Ann. Maint. + Repair (\$/yr):			0		0
Gas Price (Avg):	8.03000 \$/MCF		Downtime Loss (\$/yr.)	, 		0		

Job Information

Job Title: Madison Example

Job Type: Replacement

Notes:

Key Results

Energy Cost Savings over 5 years:	\$9,692
Maintenance, Repair, Downtime, Refrig. Savings over 5 years:	\$325
Total Savings over 5 years:	\$10,017
Annual Energy Cost Savings:	\$1,938 (61%)

Energy Cost Savings

Criteria	Unit 1 (\$)	Unit 2 (\$)	Energy Savings (\$)	Percent Savings (%)
Indoor Fan	\$1,663	\$7 <mark>1</mark> 9	\$944	57%
Cooling Electric	\$838	\$185	\$653	78%
Heating Electric	na	na	na	na
Heating Natural Gas	\$662	\$321	\$342	52%
Annual Energy Costs	\$3,163	\$1,224	\$1,938	61%

Job Information		- Equipment Information	Deeel	·	Desmand			
Job Title:	Eau Claire Example		Baseline		Propos	360		
Joh Type:	Deplesement	Unit Description:	Unit 1		Unit	Unit 2		
Job Type.		Equipment Type:	Cooling with Gas	Heat 👻	Cooling with Gas Heat 💌			
Notes:		Model:	User-Defined	•	48LC	48LC •		
		Size:		-	E012 (Medium Heat)			
		Refrigerant:	R-22	•	R-410a 💌			
		Age (yrs):	15	Years				
-Location Information		Nominal Cooling Capacity:	10.0	Tons	10.0	Tons		
Region:	U.S.A. 💌	AHRI Cooling Rating:	8.70	EER -	13.00	EER 💌		
Location:	Wisconsin 💌	Capacity Control:	1-Stage	•	3-Stage	-		
City	Equ Claira	Heating Capacity:	184.0	MBH	184.0	MBH		
City.		AHRI Heating Rating:		COP 💌		COP 🝷		
-Building Information		Heating Efficiency:	80	%	82	%		
Building Type:	Office	Indoor Fan Power:	User-Defined	- 3.70 BHP	Med. Static, 3Pt	- 3.70 BHP		
		Indoor Fan Control:	1-Speed	-	3-Speed	•		
Unit Peak Cig Load:	10.0 1005	Economizer:						
		Energy Recovery:			V			
Energy Prices		DCV (CO2) Control:			v			
Input Data:	Wisconsin - EIA	Purchase Cost (\$):		0		0		
Electric Price (Avg):	0.10420 \$/kWh	Installation Cost (\$):		0		0		
0.01		Ann. Maint. + Repair (\$/yr):		0		0		
Gas Price (Avg):	8.03000 \$/MCF _▼	Downtime Loss (\$/yr.)		0				

Job Title: Eau Claire Example

Job Type: Replacement

Notes:

Key Results

Energy Cost Savings over 5 years:	\$9,632
Maintenance, Repair, Downtime, Refrig. Savings over 5 years:	\$325
Total Savings over 5 years:	\$9,957
Annual Energy Cost Savings:	\$1,926 (57%)

Energy Cost Savings

Criteria	Unit 1 (\$)	Unit 2 (\$)	Energy Savings (\$)	Percent Savings (%)
Indoor Fan	\$1,668	\$802	\$866	52%
Cooling Electric	\$791	\$176	\$615	78%
Heating Electric	na	na	na	na
Heating Natural Gas	\$917	\$471	\$445	49%
Annual Energy Costs	\$3,375	\$1,449	\$1,926	57%

Job Information		Equipment Information	Pacolino		Dronosod			
Job Title:	Duluth Example		Dasenne		Propos	beu		
lab Tanan		Unit Description:	Unit 1		Unit	2		
Job Type:	Replacement	Equipment Type:	Cooling with Gas Heat 🔹		Cooling with Gas Heat 🔹			
Notes:		Model:	User-Defined	-	48LC •			
		Size:			E012 (Medium Heat)			
		Refrigerant:	R-22	•	R-410a			
		Age (yrs):	15 Yea	ars				
Location Information		Nominal Cooling Capacity:	10.0 Tor	าร	10.0	Tons		
Region:	U.S.A.	AHRI Cooling Rating:	8.70 EE	R 🔻	13.00	EER 💌		
Location:	Minnesota	Capacity Control:	1-Stage	•	3-Stage	-		
City	Duluth	Heating Capacity:	184.0 MB	н	184.0	MBH		
City.		AHRI Heating Rating:		DP 🔻		COP 💌		
Building Information		Heating Efficiency:	80 %		82	%		
Building Type:	Office	Indoor Fan Power:	User-Defined 👻	3.70 BHP	Med. Static, 3Pr -	- 3.70 BHP		
Usit Deals Ola Laads	,	Indoor Fan Control:	1-Speed	-	3-Speed	-		
Unit Peak Cig Load:	10.0 Tons	Economizer:			V			
		Energy Recovery:						
Energy Prices		DCV (CO2) Control:						
Input Data:	Minnesota - EIA	Purchase Cost (\$):		0		0		
Electric Price (Avg):	0.08630 \$/kWh	Installation Cost (\$):		0		0		
One Drive (true)	7 (2000 0000	Ann. Maint. + Repair (\$/yr):		0		0		
Gas Price (Avg):	7.43000 \$/MCF ▼	Downtime Loss (\$/yr.)		0				

Job Title: Duluth Example

Job Type: Replacement

Notes:

Key Results

Energy Cost Savings over 5 years:	\$7,958
Maintenance, Repair, Downtime, Refrig. Savings over 5 years:	\$325
Total Savings over 5 years:	\$8,283
Annual Energy Cost Savings:	\$1,592 (55%)

Energy Cost Savings

Criteria	Unit 1 (\$)	Unit 2 (\$)	Energy Savings (\$)	Percent Savings (%)
Indoor Fan	\$1,384	\$682	\$701	51%
Cooling Electric	\$449	\$78	\$371	83%
Heating Electric	na	na	na	na
Heating Natural Gas	\$1,037	\$5 <mark>1</mark> 8	\$519	50%
Annual Energy Costs	\$2,870	\$1,278	\$1,592	55%

Job Information		- Equipment Information	D !		Despected		
Job Title:	Indiana Example		Baselli	ne	Propos	sed	
Job Tunor	Perloyment	Unit Description:	Unit 1 Cooling with Gas Heat		Unit 2 Cooling with Gas Heat		
Job Type.		Equipment Type:					
Notes:		Model:	User-Defined	•	48LC 💌		
		Size:		•	E012 (Medium Heat)		
		Refrigerant:	R-22	-	R-410a	•	
		Age (yrs):	15	Years			
-Location Information		Nominal Cooling Capacity:	10.0	Tons	10.0	Tons	
Region:	U.S.A.	AHRI Cooling Rating:	8.70	EER 💌	13.00	EER 💌	
Location:	Indiana	Capacity Control:	1-Stage	•	3-Stage	-	
Cibr	Couth Dand	Heating Capacity:	184.0	MBH	184.0	MBH	
City.	South Bend	AHRI Heating Rating:		COP 💌		COP 💌	
-Building Information		Heating Efficiency:	80	%	82	%	
Building Type:	Office 💌	Indoor Fan Power:	User-Defined 🚽	3.70 BHP	Med. Static, 3Pr	- 3.70 BHP	
Linit Peak Cig Load:	10.0 Tops	Indoor Fan Control:	1-Speed	•	3-Speed	•	
Unit'r eak Cig Luau.	10.0	Economizer:			V		
		Energy Recovery:			v		
Energy Prices		DCV (CO2) Control:			V		
Input Data:	Indiana - EIA	Purchase Cost (\$):		0		0	
Electric Price (Avg):	0.08770 \$/kWh	Installation Cost (\$):		0		0	
Gas Price (Avg):	8 11000 S/MCE	Ann. Maint. + Repair (\$/yr):		0		0	
Gas Fride (Avg).		Downtime Loss (\$/yr.)		0			

Job Title: Indiana Example

Job Type: Replacement

Notes:

Key Results

Energy Cost Savings over 5 years:	\$8,394
Maintenance, Repair, Downtime, Refrig. Savings over 5 years:	\$40
Total Savings over 5 years:	\$8,434
Annual Energy Cost Savings:	\$1,679 (62%)

Energy Cost Savings

Criteria	Unit 1 (\$)	Unit 2 (\$)	Energy Savings (\$)	Percent Savings (%)
Indoor Fan	\$1,396	\$579	\$817	59%
Cooling Electric	\$782	\$184	\$598	77%
Heating Electric	na	na	na	na
Heating Natural Gas	\$520	\$257	\$264	51%
Annual Energy Costs	\$2,698	\$1,019	\$1,679	62%

Occupancy Sensors

- Motion & Thermal Detectors
 - Control lights
 - Relax HVAC setpoints
- Security system interlock
 - Swipe out of building with key fob and automatically turns off lights in your office and relaxes HVAC setpoints
- Light activated thermostats
 - Control HVAC when lights on
 - Payback less than 3 months
- Operable window and door interlock
 - Disables zone heat/cool/vent

Building Automation Systems

- Centralized controls
- Change scheduling for multiple HVAC units at same time
- Monitor "health" of equipment
- Internet accessible
- Alarming via text msg or email
- Collect/trend data
- Integrate to lighting control or security system

Floor Plan Views

Equipment Views

Historical Trending

"Right Sizing" Equipment

- On average building fan systems in the US are oversized by 60%*
- Most chillers are oversized by 50 to 200%**
- Spend < 1% of operation at full load
 - Don't add "safety factors" when sizing or selecting
- Better dehumidification
 - Smaller equipment will dehum better allowing higher cooling setpoints
- Less temperature swings
 - Equipment runs even cycles instead of rapid on...off...on...
- Lower first cost
 - Smaller is better

Worker Productivity Costs MORE than Energy

Figure 1: (left) Life-cycle building costs breakdown; (right) life-cycle building costs breakdown with people (salaries).

Expenditure	Annual Cost, \$/ft ²
Office-Workers' Salaries	130
Gross Office Rent	21
Total Energy Use	1.81
Electricity Use	1.53
Repair and Maintenance	1.37
Space Cooling and Air Handling Electricity	0.61 ⁸
Space Cooling and Air Handling Maintenance	0.82
Total Building Operations and Management Salaries	0.58

Table 2-1:	Breakdown	of Typical	Small	Office	Buildina	Annual	Expenditures	(from	Cler	et
	Dicanaomi	or ryprour	Q111Q11	011100	Banang	AIIIIAAI	Experiance	/	0101	••

Pie charts: ASHRAE Journal July 2013 Table: U.S. Department of Energy July 2002

Supporting Documents Available

- Advanced Rooftop Control (ARC) Retrofit: Field-Test Results
 - Pacific Northwest National Labs (July 2013)
- Single-Zone VAV Performance Evaluation
 - Quest Energy Group (Feb. 2010)
- Energy Savings and Economics for Advanced Control Strategies for Pakcaged AC Units with Gas Heat
 - Pacific Northwest National Labs (Dec. 2011)
- Staged Air Volume System 2-Speed Fan Control Strategy for Packaged RTUs
 - Carrier Corp. (March 2012)

Supporting Documents Available

- Identifying Energy Savings Potential on Rooftop Commercial Units
 - Ecotope, Inc. & Eugene Water & Electric Board
- How People Actually Use Thermostats
 - Lawrence Berkley National Labs (2010)
- Unique Approach to Part Load Operation and Energy Savings for Unitary Applications
 - Carrier Corp. (May 2010)
- Understanding Single Zone VAV Systems
 - Trane (April 2013)
- Review of Commercial RTU Field Studies in the Pacific NW and CA
 - New Buildings Institute (Oct. 2004)

Resources

- ASHRAE 90.1
 - Updated every 3 years
 - Specifies minimum energy performance for new buildings
 - www.ashrae.org
- International Energy Conservation Code (IEEC)
 - www.iccsafe.org
- Advanced RTU Campaign
 - New effort to promote RTU efficiency
 - Tools, calculators, webinars, etc.
 - www.advancedrtu.org

Resources

- ASHRAE Advanced Energy Design Guides
 - Prescriptive approach by climate zone
 - 30% Guides
 - Save 30% more energy than ASHRAE 90.1-1999
 - 6 versions published: Office, Retail, School, Warehouse, Hotel, Healthcare
 - 50% Guides
 - Save 50% more energy than ASHRAE 90.1-2004
 - 4 versions published: Office, Retail, School, Hospital
 - Free download at www.ashrae.org/aedg

Resources

HVAC	Air conditioner (0-65 KBtuh)	13.0 SEER
	Air conditioner (>65-135 KBtuh)	11.0 EER/11.4 IPLV
	Air conditioner (>135-240 KBtuh)	10.8 EER/11.2 IPLV
	Air conditioner (>240 KBtuh)	10.0 EER/10.4 IPLV
	Gas furnace (0-225 KBtuh - SP)	80% AFUE or E _t
	Gas furnace (0-225 KBtuh - Split)	90% AFUE or E _t
	Gas furnace (>225 KBtuh)	80% E _c
	Heat pump (0-65 KBtuh)	13.0 SEER/7.7 HSPF
	Heat pump (>65-135 KBtuh)	10.6 EER/11.0 IPLV/3.2 COP
	Heat pump (>135 KBtuh)	10.1 EER/11.0 IPLV/3.1 COP
Economizer	Air conditioners & heat pumps - SP	Cooling capacity > 54 KBtuh
Ventilation	Outdoor air damper	Motorized control
	Demand control	CO ₂ sensors
Ducts	Friction rate	0.08 in. w.c./100 feet
	Sealing	Seal class B
	Location	Interior only
	Insulation level	R-6
Service Water Heating	Gas storage	90% E _t
	Gas instantaneous	0.81 EF or 81% E _t
	Electric storage 12 kW	EF > 0.99 – 0.0012xVolume
	Pipe insulation (d<1½ in./ d≥1½ in.)	1 in./ 1½ in.

ced Energy Design Guide for K-12 School Buildings Ashieulae 2005 Facency Science

foward a Net Zero Energy Building

Advanced Energy Dosign Guide for Small Warehouses and Self-Str Achinying 30% Energy Toward a Net Zero En

Addining the barry barry Ann torizonteledigities Brander 201-1000 Annual Annua

Developed by American Society of Heating, Bultigerating, and Air Canditioning Engineer The American Institute of Antoleoco Biomanizing Engineering Society of North-America U.S. Gener Building Cancell U.S. Department of Energy

Ryan R. Hoger, LEED AP 708.670.6383 ryan.hoger@tecmungo.com Special Thanks to those who allowed me to use their slides or graphics today...

Ryan R. Hoger, LEED AP 708.670.6383 ryan.hoger@tecmungo.com