Modern Hydronic Designs, Controls, and Condensing Boilers

Matthew Kiemen
Marketing/ Mechanical Engineer
Ryan Company Inc.
Condensing Boiler Basics
Primary/Secondary Variable Primary Control Strategies Summary
Modern Hydronic Designs For Condensing Boilers
Boiler Efficiency Classifications

• **Standard Efficiency (80-84%)**
 – Kewanee, Burnham, Cleaver Brooks, Bryan, LES, Hurst, Slant Fin, Ray Pak, Superior

• **Mid Efficiency (85-88%)**
 – Lochinvar, Thermal Solutions

• **High Efficiency (90+%)**
 – Fulton, Aerco, Viessmann, Lochinvar, Aldrich

Modern Hydronic Designs For Condensing Boilers
Condensing Boiler Basics

- A condensing boiler recovers heat from flue gas condensate
 - NOT steam condensate
- Condensing represents opportunity for increased efficiency (Operate > 89%)
- Specific operating conditions are necessary for a boiler to operate at optimal efficiencies
Flue Gas Condensate

- Flue (exhaust) gas condensation is a process where the temperature of the flue gas cools below its water dew point.
 - Water vapor is a by-product of the gas fired combustion process
 - Flue gases change phase from a gas to a liquid
 - In a condensing boiler, the phase change happens inside the heat exchanger of the boiler itself
Flue Gas Condensate
Flue Gas Condensate

- **Why is condensate important?**
 - Condensation process provides significant energy that is made available to the application (instead of being wasted in the exhaust gases).

- **Latent Heat – Energy associated with the change of phase (gas to liquid)**

- **Flue Gas Condensate has 1,000 BTU/lb**
 - 1 Gallon = 8,340 BTU
Defining a Condensing Boiler

- To operate at efficiencies >88.6%, a boiler must experience flue gas condensation
- Condensing can occur in any fuel fired boiler, however not all boilers will survive
- Flue gas condensate is slightly acidic
- Heat exchanger design and materials of construction are critical
- Liquid condensate needs a means of leaving the boiler vessel
Condensing Boiler Designs

- Fireside design & material suitable for condensation
- Cast Iron, Carbon Steel and Copper are not suitable for Condensing
There are various aspects to take into account when selecting or specifying a boiler. The most important consideration for condensing boilers is material construction. Below are two excerpts from ASHRAE Handbook - HVAC Systems and Equipment.

"For maximum reliability and durability over the extended product life, condensing boilers should be constructed from corrosion resistant materials throughout the fireside combustion chamber and heat exchangers." - ASHRAE HVAC Systems & Equipment

“The condensing portion of these boilers requires special material to resist the corrosive effects of the condensing flue gases. Cast iron, carbon steel and copper are not suitable materials for the condensing section of a boiler." - ASHRAE HVAC Systems & Equipment

However, advances in design, controls, and manufacturing have allowed materials such as cast iron to be used where they previously could not be; as with all products, consult the manufacturer for proper application. Commercial boiler installations can be adapted to condensing operation by adding a condensing heat exchanger in the flue gas vent.

For maximum boiler life, use a corrosion resistant material like stainless steel or Cor-Ten (bridge grade steel)
Condensing Boilers Basics

- **Condensing represents opportunity for increasing overall system efficiency**
 - Condensing boilers – thermal efficiency up to 99%
 - Other areas to save operating costs

- **Condensing boilers represent opportunity for decreasing initial capital investment requirements**
Condensing Boilers

• **Condensing represents opportunity for increasing overall system efficiency**
 – Condensing boilers – thermal efficiency up to 99%
 – Other areas to save operating costs

• **Specific operating conditions are necessary for a boiler to operate at optimal efficiencies**

• **Condensing boilers represent opportunity for yearly savings.**

• **How do we achieve thermal efficiency of up to 99%?**
Keys to Condensing

- **Return Water Temperature**
 - Lower water temperatures allow flue gases to cool
 - Flue gas temperature is directly proportional to water temperature

- **Firing Rate (Modulation Point)**
 - Lower firing rate decreases flue gas velocity through the heat exchanger
 - Surface Area: Energy Transfer

- **Effective Control of Modular Boilers**
 - Sequencing and staging logic should be designed specially around condensing boilers
Why Condensing

- More efficient
- Payback quicker on purchased equipment
- Uses less energy and natural gas
- Energy savings
- Cost savings
- Rebates
 - Center point
 - Xcel energy
Efficiency Curve for Condensing Boiler

Return Water Temperature, °F, 20°F

Thermal Efficiency, %

20% Input
40% Input
60% Input
80% Input
100% Input
Condensing Boilers

![Graph showing the relationship between thermal efficiency and return water temperature for different input percentages.](image-url)
Efficiency Curve for Condensing Boilers

- Saturation Temperature (Natural Gas)

- Thermal Efficiency, %

- Return Water Temperature, °F, 20°F Delta T
Efficiency Curve for Condensing Boiler

Return Water Temperature, °F, 20°F Delta T

Thermal Efficiency, %

20% Input
40% Input
60% Input
80% Input
100% Input
Efficiency Curve for Condensing Boiler

Return Water Temperature, °F, 20°F Delta T

Thermal Efficiency, %

- 20% Input
- 40% Input
- 60% Input
- 80% Input
- 100% Input
Low RWT

- Designed for low temperature operation (RWT ≤ 140°F)
Condensing Boilers

• **Consider system designs that:**
 – Realistically achieve the efficiency that condensing boilers are capable of operating at
 – Decrease overall system energy usage
 • Multiple factors can be evaluated
 – Piping considerations
 – Control strategies
Thermal Efficiency Savings Potential with Condensing Boilers

• **Example heating system in:**
 – 4,000,000 BTU/hr design day load
 – Seasonal efficiency improvement from 80% to 95%, annual natural gas costs based on $1.00/Therm and average monthly temperatures for heating season:
 • 80% - $79,500
 • 95% - $67,000
 • **ANNUAL SAVINGS:** $12,500

• **But how do we achieve the increased efficiency and what other improvements can be made?**
Condensing Boiler Basics
Primary/Secondary Variable Primary Control Strategies
Summary
Historical Designs

- 180°F hydronic loop set points
- Primary/secondary pumping
- Protecting boilers from condensing and thermal shock
- Calculate “design day” load, select one large boiler, put in a second boiler for redundancy.
- *We can design modern systems that do not have to address any of the above!*
Primary/Secondary Arrangements
The Applications

• Decouples boiler and system loops

• Used in traditional systems to protect non-condensing boilers from low return water temperatures and low flow

• Used in modern systems to protect low-mass, low-volume condensing boilers from:
 – Thermal Shock
 – Low or No Flow (Localized Boiling, Scaling)
 – Excessive Flow (Erosion)
P&ID of Traditional Non-Condensing System

Boiler #1
Sized for Maximum Load Conditions

Boiler #2
100% Redundant

System Pump
180°F
Primary/Secondary Piping For Condensing Boilers (Single)
Primary/Secondary Piping For Condensing Boilers (Multiple)
Equal Flow Distribution

- Boiler GPM = System GPM
- Equal system/boiler supply and return temperatures
- This situation is ideal for a condensing boiler
- Very difficult to achieve in practice
System Flow Greater Than Boiler Flow

- Mixing occurs in the manifold

- Boiler must modulate higher to meet setpoint demand
 - Reduced thermal efficiency at higher firing rate
 - May cause nuisance MRHL trips

- Boiler and system return temperatures are equal
Boiler Flow Greater Than System Flow

- Boiler and system supply temperatures are equal
- Boiler return temperature is greater than system return temperature
 - Common on constant speed boiler pump, variable speed system pump applications
 - Reduced thermal efficiencies with higher RWT
Condensing Boiler Basics
Primary/Secondary
Variable Primary
Control Strategies
Summary
Primary Only Variable Flow
The Basics

- The system pumps are used to provide flow through the boilers
 - No dedicated boiler pumps required!
- Does not require mixing manifolds, hydraulic separators, or heat injection loops (simpler design)
- The coldest water temperatures are always delivered directly to the boiler return water connection (no mixing!)
- The hottest water temperatures are always delivered directly to the system (no mixing!)
System Flow Directly Through Boilers

The boilers used are High Mass and High Volume condensing Pressure Vessels.
Primary Only Variable Flow
Why Use Motorized Isolation Valves?

• Only send flow through enabled boilers
 – Reduces natural draft through idle boilers (heat loss!)

• Eliminates operating off a mixed temperature

• Prevents nuisance high limit trips

• Always leave the lead valve open to provide a path of flow

Control strategy: Boiler enabled, valve open.
Boiler disabled, valve closed. Lead boiler always open.
Fail open.
• Important to use, install at boiler outlet

Control strategy: Boiler enabled, valve open. Boiler disabled, valve closed. Lead boiler always open. Fail open
Primary Only Variable Flow
The Applications

• Not every boiler is designed for primary only variable flow applications

• The boiler must have:
 – Flexibility for large variations in flow
 – No minimum return water temperature requirements
 – Low water pressure drop

High mass and high volume
Advantages of High Volume Condensing Boilers

- High water volume benefits:
 - Decreased cycling
 - Tolerance of varying flow and/or no flow conditions
 - No return water temperature requirements
 - Tolerance of water chemistry variances
 - Decreased risk of scaling and/or erosion
Advantages of High Mass Condensing Boilers

• Conservative designs are less likely to experience:
 - Thermal shock
 - Cyclic fatigue
 - Premature failures
Mass & Volume: Increasing Efficiency

- **Increased overall system efficiency**
- **Low water side pressure drop through boilers**
- **Decreased system energy requirements**
 - No dedicated circulator pump running
 - Energy from boilers is made directly available to the hydronic loop
 - No heat injection loops
Primary Only Advantages

• **Eliminates boiler pumps, additional piping & valves**
 - Lower installation costs
 - Lower maintenance costs
 - Lower operational (kWh) costs

• **Eliminates mixing to maximize thermal efficiency**

• **Simpler system designs**

• **Smaller boiler plant footprint**
Compare The Heating Plant size

Primary/ Secondary Design
Full Flow or Primary Only Design
Compare The Design

Primary/Secondary Piping

- **Boiler #1**
 - Sized for Maximum Load Conditions
- **Boiler #2**
 - 100% Redundant

Primary only (Full Flow)

- **Boiler #1**
- **Boiler #2**
- System Pump
- 180°F
- VSD
Increasing System Efficiency

Variable Speed Drives
System Pumps

Modern Hydronic Designs For Condensing Boilers
Primary Only with VSD

Modern Hydronic Designs For Condensing Boilers
Why use Variable Speed Drives?

• **VSD controls the speed of a motor**
 - Varies with changing electrical power supplied to the motor

• **Decreased pump and system operating costs**

• **Typical operating turndown of a drive is 3:1**
 - Pump affinity laws are used to calculate volume capacity, head or power consumption in pumps when changing speed (rpm).
 - Amp draw of the motor will be reduced
Condensing Boiler Basics
Primary/Secondary
Variable Primary
Control Strategies
Summary
Control Strategies

• Number and type of boilers

• Outdoor reset schedule

• Number of pumps, VSD's

• Number and load requirements of zones

• A sophisticated sequencing system should be able to control boilers, pumps and the speed of the VSD's
BMS System/Controls Contractor

- Operate boilers at low fire
- Incorporate delays between boiler stages
- Equal run time on all boilers
- Ownership of boiler control
Design Day

Modern Hydronic Designs For Condensing Boilers
Actual Shoulder Loads
Seasonal Building Heating Load

- **Design Day Temperatures.**
 - 4.0MM BTU/Hr.

- Make sure that there are plenty of BTUs available for worst case scenario.

- **How often do Design Days occur?**

 - March – 1.0MM
 - October – 400 MBH
Outdoor Reset Schedule

- Condensing or Non-Condensing Boilers
- Condensing Boilers Only
Condensing boilers operate more efficiently at their lowest firing rates. Keep multiple boilers on at low fire!

Five boilers on at 20% is better than one on at 100%, average 4% higher efficiency!
Parallel Modulation
Condensing Boilers

LEAD
LAG 1
LAG 2

Modern Hydronic Designs For
Condensing Boilers
Benefits of Low Excess Air

- **Higher Dew Point Temperature**
 - Wider Range of Condensing Operation

- **Higher Combustion Efficiency**

- **Lower Sensible Heat Loss**
Controlling Pumps and VSD’s

• The efficiency of a typical motor:
 – Peaks at about 75% capacity
 – Drops off below 33% capacity

• Operate multiple pumps between 33% and 75% to maximize motor efficiency.
Sequencing System
Controlling the VSD’s

[Diagram of a system with labeled components such as boilers, pumps, and zones. The diagram illustrates the flow and sequencing system.]
System Flow and Differential Pressure

- DP measurement tells us how many users are calling for heat (more open zones means less resistance & smaller DP).

- Sequencing system uses flow requirement and loop temperature to determine how many BTU’s need to be provided by the boilers.
Financial Impact

<table>
<thead>
<tr>
<th></th>
<th>Primary/Secondary</th>
<th>Primary Only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2) Non-condensing boilers
 75 HP each
 No variable speed drives
 Continuous 180°F</td>
<td>(5) Condensing boilers
 1,000 MBH each
 Variable speed drives
 Outdoor reset schedule</td>
</tr>
<tr>
<td>Initial Capital Investment</td>
<td>$12,000 (purchase and install dedicated pumps)</td>
<td>Installing additional boilers (flue stack, fuel piping, drains, etc.)</td>
</tr>
<tr>
<td>Operating Costs (Boiler Efficiency, Pump Operation)</td>
<td>$12,500/yr thermal efficiency
 $1,500/yr warming up boilers
 $1,600/yr operate boiler pumps
 $3,000/yr system pumps - no VSD’s</td>
<td>Condensing efficiency
 No boiler pumps
 VSD’s on system pumps</td>
</tr>
</tbody>
</table>

$18,600 annual savings
Long Term Investment

• **Lifecycle of a boiler:**

 – Stress on a heat exchanger & pressure vessel is the main component in determining the life cycle of a boiler

 – What causes stress?
 • Cycling (boilers turning on and off)
 • Lack of control strategy
 • Lack of proper maintenance
Case Study

- Existing Condensing boiler System with boilers that been installed for 7 years.
- Replaced original control system with a controller based around condensing boilers
- 35% cost reduction
- Decreased cycles from 14,000/yr to less than 1,000.

![Total Natural Gas Usage (ft³): Before and After ModSync Installation](chart)
Summary

• There is a New Way to Design your Hydronic Systems

• Condensing Boiler Systems are here to stay. Let's take advantage of all they have to offer.

• 2 Keys to Condensing Systems
 – Return Water Temperature
 – Firing Rate

• Full Flow Design (Primary only) creates additional energy and cost savings
 – Lower installation costs
 – Lower maintenance costs
 – Lower operational (kWh) costs

• Controls are an Important Factor as well
Thank You!

Questions?
Matthew Kiemen
Marketing/ Mechanical Engineer
Direct #: 952-767-7063
Cell #: 612-803-1660
Email: matt@ryancompanyinc.com