Domestic hot water can dictate return water temps

- Traditional coil-in tank requires high boiler temperatures, limiting boiler efficiency during DHW call
- Direct-fired condensing water heaters will be more efficient

Summary: getting condensing boilers to condense!

- Proper oxygen levels in flue gas contribute to optimal condensing conditions
- Maintaining aggressive control settings prolongs condensing capabilities
- VFD pump controls reduce pump speeds at part loads to optimize heat transfer
- Boiler room piping can dictate return water temps
- Choosing direct-fired condensing water heaters over indirect (sidearm) water heaters will maximize efficiency

More info on condensing boiler research

- Final report will be published this summer
 - 12 sites (Education, Office, Multifamily facilities)
 - Optimization improvements and energy savings analysis
- Webinar on April 3rd
 - Mncee.org/innovation- exchange

Optimizing ventilation systems

Optimizing ventilation systems

ISSUES

- High fan electricity use
- Excessive ventilation airflow
- Occupant complaints of drafts, odors
- Duct leakage
- Clogging and other flow balancing problems
- Difficult/costly to measure and quantify energy savings associated with retrofitting

Central ventilation systems

Central apartment exhaust

Central corridor/make up air systems

Ventilation Improvements – corridor systems

 Reduce fan speed to provide code required ventilation flow

ISSUES

- Design flow rates were much higher than current required flow
- Faulty controls/sensors
- Flow rates not verified

Corridor ventilation retrofit in Minneapolis

Project: Re-sheave fan for lower flow

- 4,700 cfm reduced
- 9,611 therms saved
- 7,244 kWh saved
- \$6,899 annual savings
- <6 month payback</p>

Ventilation Improvements – central apartment exhaust systems

- Reduce & balance flow
- Seal inlets, curbs & ducts
- Install high efficiency fans

ISSUES

- Design flow rates were much higher than current required flow
- Unbalanced flow
- Flows difficult to verify and seldom measured

Central exhaust retrofit in Minneapolis

Project:

1- Replace operable balancing louvers with fixed orifices

2- Replace belt drive exhaust fans with high-efficiency type

- 2,299 cfm reduced
- 4,706 therms saved
- 21,979 kWh saved
- \$5,037 total savings
- 7 year payback

Center for Energy and Environment

Reduced odors and noise

Fixed balancing orifices balance inlet flow at low cost

1. Remove balancing devices prone to clogging or tampering

Center for Energy and Environment

3.Install fixed orifice sized for correct flow

Replacing exhaust fans

- 1. Seal leakage below fans at curb
- 2. Replace with EC fans with adjustable speed controls
- 3. Verify flow is correct

Trash chutes can affect ventilation performance

- Trash rooms may exhaust too much air
- Lack of air sealing can cause odor transfer
- Ventilation flow may be increased to compensate

© 2014 Center for Energy and Environment

Addressing the trash chute

- Keep trash room doors closed
- Seal trash room off from rest of building
- If no door, seal chute to compactor/trash bin
- Reduce trash room exhaust fan flow rate
- Reduce chute cap opening

\$1,500 savings annually from reduced stack flow

- Multifamily Ventilation Assessment & Retrofit Guide
 available now
 - Guide for assessment and retrofitting central supply and exhaust systems (and trash chutes)
 - Audience: HVAC contractors and energy consultants
- Project report this summer
 - Energy savings opportunities found in 18 buildings
 - Retrofit outcomes on 6 buildings

Controlling hot water recirculation loops

Hot water recirculation loops

Image source: HMG, Inc

DHW energy losses

Image source: HMG, Inc. Multifamily Central Domestic Hot Water Distribution systems. 2013

Enovative's Demand Controller

- Control stops pump when
 - no building demand or
 - the recirculation loop temp is above 100F
- Pump run time reduced from 24/7 to average 14 mins / day (ARIES Collaborative/Building America study in 2014)

A good investment...

- Has aggressive energy paybacks
- Lowers O & M costs
- Improves building comfort
- Makes things easier for staff
- Is "tried and true"
- □ Is easy to implement

Variables that affect savings

- Proper Installation
- Insulation on recirc loop pipes
- Seasonal consumption
- Incoming cold water temp
- Building consumption habits
- "Crossover"

DHW Savings Range: 5-15% Average: 9%

Rochester installation

- 3-story
- 39 unit building
- Built in 1955
- Failed water heaters
- Shower heads and faucet aerators installed along with building assessment

10% DHW savings from Demand Controller Payback = 4 years 540 therms saved, 14 therms / unit

Aerosol envelope air sealing

Concept:

- Pressurize apartment unit
- Spray air sealing fog
 Sealant particles build up on gaps as they exit the envelope

Multifamily compartmentalization

Creating an interior air barrier around each unit

- Reduced stack effect
- Reduced noise transfer
- Reduced odor transfer/improved IAQ
- Increased comfort
- Increased energy efficiency

Nuts and bolts

PREP WORK

- Horizontal surfaces covered
- Windows, exterior doors covered
- Finished floor covered (ideal before flooring is installed)
- Door handles covered
- Plumbing fixtures covered
- Ceiling fans covered
- Radiators covered
- Sprinkler head openings covered
- Remove outlet/switch plates

Nuts and bolts

SET UP/SEAL

- Blower door and nozzles
- 100Pa pressurization
- ~ 90% RH maintained
 CLEAN UP
- Open windows, purge
- Remove masking

• New Construction Results 18 units in 3 buildings

- Typical air leakage reduction
 - 0.56 ACH50
 - Passive house 0.6 ACH50
- 78% to 95% tighter than code
 - 3.0 ACH50 max. required by code
 - 2015 Residential Energy Code
- 90% tighter than Energy Star high rise requirement for multifamily

• Existing building results 9 units in 2 buildings

- Typical air leakage reduction 4.76 ACH50
- Avg leakage reduced: 691 CFM50
 - 68% reduction

Leakage reduced over injection period

Sealed penetrations

Sealed penetrations

Sealed wall/floor joint

Leakage Results: 18 New Construction Units

Average leakage: pre= 3.9 ACH50, post= 0.7 ACH50 54% to 95% below code requirement, average= 77%

Leakage Results: 9 Existing Units

(

Average leakage: pre= 14.1 ACH50, post= 4.8 ACH50 6 of 9 within 15% of new construction code requirement

Identifying the opportunity

IDEAL CANDIDATES

- Moderate rehabs "floors and cabinets"
- New construction

NOT IDEAL

- Where carpet is installed
- If occupied

• Air sealing at lower cost?

Aerosol

- Prep
- Sealing process
- Simultaneous air leakage testing ensures results

Vs.

Manual air sealing

- i.e. caulking/foaming
- Architectural specification
- Labor
- Air leakage test

=> Uncertain results

Marketable?

BENEFITS

- Reduced mid and high range noise transfer
- Reduced odor transfer
- Improved comfort

A good investment...

- Has aggressive energy paybacks
- Lowers O & M costs
- Improves building comfort
- Makes things easier for staff
- Is "tried and true"
- Is easy to implement
- Simultaneous air leakage testing ensures results
- Expedited process, labor savings potential

CONSIDERATONS

- Cost
- Not a solution for large air leak gaps
- Rehab or new construction only
- Balanced ventilation is crucial

Stay tuned for more info (Jan 2017)

Study will look at :

- 6 test sites; Rehabs and new construction in MN
- Enabling commercialization of process
- Air leakage reductions
- Sound attenuation
- ID leak site locations with fluorescent dye/black light photography
- Evaluation of time and materials required

More info CEE programs and research: mncee.org

Corrie Bastian cbastian@mncee.org 612.244.2425

