Energy Efficient Design Lessons Learned & Best Practices

Presented to:

Energy Design Conference Preconference Workshop Duluth, Minnesota February 20, 2017

Presented by: Rebecca Ellis, PE, LEED AP BD + C, CCP, CPMP, CxA President Questions & Solutions Engineering, Inc.

Better Performing Buildings™

Outline

- Owner Involvement
- Design Phase Comparative Analysis
- Integrated Energy Design
- Right-Sizing System Solutions
- Long Term Operations Outlook for Persistent Energy Conservation

- Understand the Energy Efficient Design Process
- Know the Questions to Ask & Deliverables to Expect
- Appreciate the Design Team Effort
- Document Objective Owner's Project Requirements
- Commit Facilities Operations Time to Participate on the Design Team
- Contribute to Design Discussions & Debates
- Be Pragmatic about All Project Priorities

- Understand the Energy Efficient Design Process
- Know the Questions to Ask & Deliverables to Expect
- Appreciate the Design Team Effort
 - Design phase scope definition
 - Reasonable design phase schedule milestones
 - Direct contact with all design team members
 - Increased design professional fees

- Document Objective Owner's Project Requirements
 - Energy use intensity (EUI)
 - Space temperatures
 - Space relative humidities
 - Indoor air quality
 - Occupancy schedules
 - Etc.

- Emergency power coverage
- Redundancy/reliability
- Lighting levels
- Domestic water temperatures
- Renewable energy targets

- Commit Facilities Operations Time to Participate on the Design Team
 - Speak now or forever hold your peace
 - Command/demand respect
 - Be open to new ideas
 - Do not accept solutions which you do not understand
 - Contribute to cost/benefit/risk assessment of various options
- No Full Time Operations Team?
 - Engage a third party owner's technical representative

Design Phase Comparative Analysis

- Select Design Engineers with Energy Systems Comparison Experience (or Demonstrated Passion)
- Select Architect with an Understanding of and Enthusiasm for the Process
- Design Team needs to be Believers
- High Level Evaluation of all Potential Options
- Deep Dive into a Manageable Number of Options & Sub-Options
- Quantitative Assessment of Life Cycle Costs

Integrated Energy Design

- Consideration of all Building Elements
 - Architecture
 - Orientation
 - Occupancy
 - Operations Staffing
 - Mechanical
 - Electrical
 - Life Safety

Integrated Energy Design

- Detailed Equipment and Systems Integration
 - Central building automation system
 - Self-contained equipment controllers
 - Life safety systems
 - Lighting controls
 - Security
 - Building envelope

Integrated Energy Design

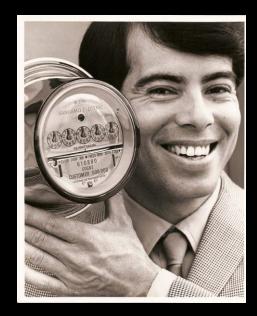
- Longer Design Schedule, Higher Design Fees
 - Experienced design team will understand more time is required
 - More time = more design \$\$
 - More time = longer design phase schedule
 - Design team needs to be serious about meeting their deadlines

Right-Sizing System Solutions

- Maintainable?
 - Quantity of equipment vs. staff availability
 - Availability of local outside expertise
- Sustainable?
 - What does it take to keep the system operating as intended?
 - Life expectancy of technology
 - Operations staff analytical skill set

Right-Sizing System Solutions

- Operations & Maintenance Budget Requirements
 - Sensor calibration
 - Building automation system "analyst"
 - Proactive instead of reactive maintenance


Long Term Operations Outlook For Persistent Energy Conservation

- Respectfully Listen to Building Operators
- O&M Documentation Specification
 - Equipment manuals
 - Systems manual
- O&M Equipment Training Planning & Specification
 - Equipment training
 - Systems training
- As-Built Documentation

Long Term Operations Outlook

- On-Going Commissioning Planning
 - Preventive maintenance schedule
 - Sensor calibration schedule
 - Performance tracking and analysis
 - Building automation system trends
 - Utility energy usage
 - System performance testing schedule
 - Smart alarms

Costs

- Increased Design Fees
- Procurement & Installation Costs
- Decreased Troubleshooting Costs
- Decreased Remediation Costs
- Decreased Energy Costs

Energy Efficient Design Summary

- Owner-Driven, Designer-Delivered Process
- Increased Design Phase Effort to:
 - Improve Energy Performance
 - Reduce Overall Owner Costs
- Great Opportunity for Energy-Passionate Innovative Engineers

Discussion

