ROOF PONDS

A Heating and Cooling Application through Thermal Mass Storage An indirect gain heating and cooling system where the thermal mass, which is water in plastic bags, is located on the roof of the space which is being heated and/or cooled. Indirect Gain Method from Solar Radiation Water as Thermal mass 1. Absorbs 2. Transfers

Why Water ?

SPECIFIC HEAT (Btu/lb•°F)

CONDUCTIVITY (Btu•in.)/(ft2•hr•°F)

DENSITY (lb/ft3)

HEAT CAPACITY [Btu/(ft3•°F)]

Water

Brick

Adobe

20.0

Gypsum

Concrete

THERMAL STORAGE CAPACITY (Btu2/h•ft4•°F2)

The roofpond system: defined as a *passive solar radiation system*.

Since it usually consists of motorized retractable insulation panels it is best defined as a *hybrid system*.

(It can be interactive: manual when home and motorized when gone)

Harold R. Hay, inventor of the roofpond system, originally patented the roofpond as the SkythermTM system.

CONTRACTOR OF THE ORIGINAL GUIDE TO LIVING WISELY Plowboy Interview: Harold R. Hay Talks About Solar Energy

Hay shares his thoughts on solar energy, passive cooling, movable insulation and much more in this Plowboy Interview.

By the Mother Earth News editors September/October 1976

There are two distinct roofpond systems:

North

Southwest

Roofpond systems: Heating Mode

Southwest

Roofpond systems: Cooling Mode

North

Southwest

1967 Phoenix **Prototype** Test Structure

10' x 12' 120 Sq. Ft.

Aggregate Lightweight Concrete Block Walls/Vermiculite Filled External 1.5" Rigid Polyurethane Insulation on the East and West Walls External insulation on north and south foundations and 4" thick concrete floor slab 4' x 8' panels 1.5" thick polyurethane movable insulation South side overhang Carport for movable rooftop 12'x12' Window on North and South Walls Entry door on South Wall 6"-7" thick water filled bags on supported 26 gauge steel sheets

1967 Phoenix Prototype Test Structure

Roofpond inventor, Harold R. Hay, 1967. Image courtesy of the Natural Energies Advanced Technology Laboratory at the University of Nevada, Las Vegas

One day processed data measured: Phoenix prototype test building, August 23

Yearly processed data measured from the Phoenix prototype test building.

Image courtesy of the Natural Energies Advanced Technology Laboratory at the University of Nevada, Las Vegas

In 1973 they built a 1100 sq. ft. second house in Atascadero, CA

Image courtesy of the Natural Energies Advanced Technology Laboratory at the University of Nevada, Las Vegas

Image courtesy of the Natural Energies Advanced Technology Laboratory at the University of Nevada, Las Vegas

It's been heating and cooling without electricity for the past 40 years now.

Its only recognition was the **1976** Bicentennial awards for the categories of environmental and solar energy.

The Energy Technology Engineering Center report contracted by the US DOE conclusion:

"A well-designed roofpond can maintain comfortable indoor ambient air temperatures in climates with an outdoor temperature range between 32°F and 115°F (Marlatt 1984)"

What about northern climates that get below 32°F?

CONTINUED RESEACH

Alfredo Fernandez-Gonzalez, Director School of Architecture, University of Nevada, Las Vegas. "Analysis of the thermal performance and comfort conditions produced by five different passive solar heating strategies in the United States midwest." Solar Energy, May 2007

Climate normals for	Muncie, In	diana												
City											М	uncie		
State	te									IN				
Lat	Ĺ									40.13N				
Long	g									85.25W				
Elevation											286.5 m above seal level			
	January	February	March	April	May	June	July	August	September	October	November	December	Annual	
Minimum temperature (°C)	-8.8	-7.0	-1.6	4.1	10.7	15.7	17.8	16.6	12.1	5.5	0.3	-5.6	5.0	
Maximum temperature (°C)	0.5	3.1	9.1	15.9	22.1	27.2	29.4	28.2	24.6	17.9	10.0	3.4	15.9	
Mean temperature (°C)	-4.2	-1.9	3.8	10.0	16.4	21.4	23.6	22.4	18.3	11.7	5.2	-1.1	10.4	
Precipitation (cm)	5.2	5.7	7.9	9.1	10.6	10.9	10.1	8.9	7.6	6.7	8.6	7.7	98.9	
HDD base 18.3 °C	698	568	452	252	102	12	1	7	47	210	395	602	3346	
CDD base 18.3 °C	0	0	0	2	41	106	164	132	47	6	0	0	498	

Outdoor Design Conditions Comparison: Basis 66.2F^o

Minneapolis, Minnesota HHD 7981 CCD 824

Fig. 2 Basic floor plan and longitudinal sections of each one of the test-cells

	CC	DG	TW	WW	SS	RP	
Floor area (m ²)	11.91	11.91	11.91	11.91	11.91	11.91	
UA total (W/°C)	28.74	35.47	34.93	34.75	45.54	Day 44.09	Night 29.93
Measured ACH	0.68	0.85	0.81	0.86	0.67	0.91	
Solar collector area (m ²)	-	4.28	4.28	4.28	6.05	4.47	
Thermal storage capacity (kJ/°C)	569.57	1786.17	1728.84	4909.57	1517.80	9629.80	

Table 3

performance indicators of each strategy

	CC	DG	TW	WW	SS	RP
Average diurnal swing (°C)	2.26	7.80	3.32	4.99	5.28	1.24
Maximum diurnal swing (°C)	2.41	10.27	3.79	5.94	5.74	1.44
Average simultaneous north-south variation (°C)	0.07	2.89	0.45	0.98	0.32	0.11
Maximum simultaneous north-south variation (°C)	0.15	3.68	0.52	1.22	0.50	0.20

Roofpond (RP) Interior

Sunspace (SS) Interior

Water-Wall (WW) Interior

Trombe-Wall (TW) Interior

Direct Gain (DG) Interior

Control Cell (CC) Interior

Control test-cells show low diurnal swings in the roof pond test cell. This should be a pre-requisite to achieving thermal comfort.

CC/Control Cell, DG/ Direct Gain, TW/Trombe Wall, WW/ Water Wall, SS/Sun Space, RP/Roof Pond

RoofPond North with movable insulation

Achieving optimal thermal comfort from a passive solar strategy using the most effective method in a northern climate.

RoofPond North with movable insulation Inver Grove Heights, MN 1979

Case study: Roof Pond North, 2014

Brainerd, Minnesota	<u>46°21′29″N 94°12′03″W</u>
HDD65°F	8600
CDD65°F	512
Winter Dry Bulb °F	-20°F
Summer Dry Bulb	86°F
Summer Wet Bulb	71°F
Mean Daily Range	(°F) 19°F

RP_performance software December comparison

RP_performance software August comparison

HEED: Home Energy Efficient Design Free Software

http://www.energy-design-tools.aud.ucla.edu/heed/

Slab + 24" of water without PV HERS No heating needed Heating needed KwH Used for heat

3 8326 HDD 434 HHD 609 yr/\$66

SkythermTM

Harold Hay may have been the obstacle for this technology not moving forward, and, from what I understand, the reason there are few houses with this system, even though it is simple and practical Because of its tested success, multiple roofpond structures are still being tested in diverse locations around the US and the world, partially due to resistance to the concept. Historically, roofpond applications have proved to be viable low-cost solutions for both heating and cooling in a wide variety of climate regions.

A Word about Movable Insulation

1. https://www.youtube.com/ watch?v=MroKo-598T0

2. https://www.youtube.com/ watch?v=Xen_VWyDezY

Cold Climate Housing Research Center, Fairbanks Alaska

	Condensation Resistance*	Insulation Value	Affordability	Ease of Installation	Durability	Functionality		
Insulation Type								
Exterior foam shutters								
Exterior mechanical shutters								
Exterior storm window								
Interior insulated blinds								
Interior storm window								
Interior curtain					9			
Interior plastic film								
Interior sliding shutter								
*Condensation Resistance Bad \xrightarrow{P} $$ Worst Low $$ $$ High								

Another Word about Movable Insulation

WINDOW U VALUES

U = 0.20

U = 0.28

U = 0.48

MOVABLE INSULATION: Completely open Winter application South side closed during the night, anytime when occupant is gone, and if there is not any solar radiation (sunlight) to be gained during the day if so desired.

FLOOR

MOVABLE INSULATION: Completely closed Winter application South side closed during the night, anytime when occupant is gone, and if there is not any solar radiation (sunlight) to be gained during the day if so desired.

More Words about Movable Insulation

Roofponds and Exterior moveable insulation need to be looked to as effective passive solar strategies, which will strongly contribute to energy demand reduction in the building sector from now and into the future.

As more people learn and experience the concept, sooner or later, these systems can grow into a viable and highly desirable option for reducing heating and cooling loads.

We need to invest and move forward real living situations in which to show not only the value, but also the importance. COMFORT AND THERMAL PERFORMANCE OF PASSIVE SOLAR TEST ROOMS IN MUNCIE, INDIANA.

Alfredo Fernández-González

School of Architecture, University of Nevada, Las Vegas Las Vegas, NV 89154-4018

http://web.unlv.edu/labs/neatl/documents/2004_ASES_AFG_1.pdf

RP_PERFORMANCE: A DESIGN TOOL TO SIMULATE THE THERMAL PERFORMANCE OF SKYTHERM NORTH ROOFPOND SYSTEMS

Alfredo Fernández-González

School of Architecture, University of Nevada, Las Vegas Las Vegas, NV 89154-4018

<u>http://web.unlv.edu/labs/neatl/documents/2004_ASES_AFG_2.pdf</u>