

Keeping Ground Source Heat Pump Projects on the Table

Ed Lohrenz, B.E.S., CGD

204.318.2156 ed@geoptimize.ca

conference & expo

Duluth, MN February 20-22, 2017

In accordance with the Department of Labor and Industry's statute 326.0981, Subd. 11,

"This educational offering is recognized by the Minnesota Department of Labor and Industry as satisfying **1.5 hours** of credit toward **Building Officials and Residential Contractors** continuing education requirements."

For additional continuing education approvals, please see your credit tracking card.

Feasibility assessments for GSHP systems

- High percentage of potential GSHP projects scrapped at feasibility study stage. Rules of thumb are used to:
 - Building peak loads are estimated 400 ft² per ton or 20 Btu/hr per ft²
 - Estimate amount of drilling required 200' of borehole per ton
 - Land area required is based on 20' spacing between boreholes
 - GHX configuration is not considered
 - Accurate hourly energy models are seldom developed at feasibility stage and are seldom used to influence building heating and cooling loads
- This results in a GSHP system that does not provide a good return on investment and potential GSHP project is discarded as too expensive
- Presentation reviews one project in Minnesota that was pulled back into consideration – a 24,000 ft² new library building

Preliminary "feasibility assessment"

- 24,000 square feet / 400 = 60 tons capacity required
- 60 tons X 200' = 12,000' of borehole
- 12,000' X \$18 = \$216,000
- Geothermal vault = \$40,000
- Total extra cost of GSHP system = \$256,000

Design process for a GCHP system

Preliminary energy model

Preliminary energy model developed using Trane Trace 700 software created by ABC Engineering. Minor changes were made to the systems described in the model to allow it to run. Hourly loads converted to monthly energy loads (kBtu) and monthly peak loads (kBtu/hr)

Occupancy schedule in energy model

Building occupancy schedules reviewed to reflect building use as accurately as possible. Current Library Director consulted to provide estimated occupancy schedule for the proposed building. Schedule input to energy model.

					Septembe	er to May			June to August								
Max	320	Mon -	Thurs	Fi	i	Sa	at	Su	in	Mon -	Thurs	Fr	i	Sat		Su	n
tart Time	End Time	%	#	%	#	%	#	%	#	%	#	%	#	%	#	%	#
0	1	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0
1	2	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0
2	3	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0
3	4	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0
4	5	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0
5	6	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0
6	7	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0
7	8	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0
8	9	1%	3	1%	3	1%	3	0%	0	1%	3	1%	3	1%	3	0%	0
9	10	5%	16	5%	16	5%	16	0%	0	5%	16	5%	16	5%	16	0%	0
10	11	10%	32	10%	32	10%	32	0%	0	10%	32	10%	32	10%	32	0%	0
11	12	15%	48	20%	64	12%	38	0%	0	20%	64	20%	64	12%	38	0%	0
12	13	12%	38	15%	48	14%	45	0%	0	15%	48	15%	48	14%	45	0%	0
13	14	10%	32	12%	38	16%	51	0%	0	12%	38	12%	38	16%	51	0%	0
14	15	10%	32	10%	32	14%	45	0%	0	10%	32	10%	32	14%	45	0%	0
15	16	12%	38	15%	48	12%	38	0%	0	15%	48	15%	48	12%	38	0%	0
16	17	15%	48	20%	64	0%	1	0%	0	20%	64	20%	64	0%	1	0%	0
17	18	18%	58	25%	80	0%	0	0%	0	25%	80	25%	80	0%	0	0%	0
18	19	15%	48	1%	3	0%	0	0%	0	15%	48	1%	3	0%	0	0%	0
19	20	10%	32	0%	0	0%	0	0%	0	12%	38	0%	0	0%	0	0%	0
20	21	1%	3	0%	0	0%	0	0%	0	8%	26	0%	0	0%	0	0%	0
21	22	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0
22	23	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0
23	24	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0	0%	0

Energy model changes to match design narrative - 15°F setback

Energy model adjusted to match design narrative as closely as possible. Design narrative includes 15°F night setback for heating and cooling from daytime setpoint.

Night setback reduced to 5°F

Night setback adjusted to 5°F. Peak cooling load drops from 667 to 625 kBtu/hr and peak heating load drops from 507 to 450 kBtu/hr.

Economizer added to heat recovery ventilation system

Economizer dampers added to heat recovery ventilation system to take advantage of cool outdoor air to provide cooling when possible. Peak cooling & monthly energy loads reduced in winter and shoulder seasons.

Lighting intensity reduced and CO2 sensors added to fresh air supply

Reducing lighting intensity reduced using occupancy sensors and daylighting sensors reduces annual energy consumption from lighting (but doesn't reduce peak gains). CO2 sensors used to control fresh air supply to facility reduces heating and cooling energy loads. NOTE that reduced lighting gains *increases* heat required from GCHP system.

Night setback eliminated in energy model

Warming or cooling a building to reach daytime setpoints forces full heat pump capacity for an extended time, especially to help mass in building to regain temperature. This greatly increases peak heat extraction from and heat rejection to the GHX during morning recovery period.

Impact of night setback on design day heating load profile

Heating the building after allowing the temperature to drop creates a peak heating requirement...and peak heat extraction from the GHX for several hours. Overnight energy loads increased to maintain temperature, but overall effect on energy cost is not large.

Impact of night setback on design day heating load profile

Heating the building after allowing the temperature to drop creates a peak heating requirement...and peak heat extraction from the GHX for several hours. Overnight energy loads increased to maintain temperature, but overall effect on energy cost is not large.

Impact of night setback on design day cooling load profile

Cooling the building to reach setpoint when the building is occupied in the morning significantly increases peak heat rejection to the GHX. Note that the load profiles only indicate the building loads...compressor loads add approximately 20% more heat to the GHX.

Keeping GSHP projects on the table

Impact of night setback on design day cooling load profile

Cooling the building to reach setpoint when the building is occupied in the morning significantly increases peak heat rejection to the GHX. Note that the load profiles only indicate the building loads...compressor loads add approximately 20% more heat to the GHX.

Energy model iterations

Each iteration of the energy model was changed in an attempt to reduce the peak or annual cooling loads and balance energy loads to the GHX.

Keeping GSHP projects on the table

Impact of energy model iterations on GHX size

GHX modeling software was used to calculate the size of GHX required for this project based on the successive energy models. Two commonly used GHX modeling algorithms were used to determine the total amount of borehole. For larger commercial projects the G-function algorithms are considered more accurate.

Final energy model used to refine GHX layout and borehole configuration

Changes to GHX layout and borehole configuration affect borehole length

The final iteration of the energy model was used to refine the GHX layout and borehole configuration to further reduce the total amount of borehole required. Note that allowing less efficient heat pump equipment on a cooling dominant building will *increase* the amount of drilling required.

GHX model using hourly loads

Hourly energy model loads provide greater detail in how the GHX will perform. Monitoring the GHX allows the building operator to determine if the system is operating as designed and helps validate the design process.

Keeping GSHP projects on the table

GHX model using hourly loads

Hourly energy model loads provides more detailed information to calculate the GHX more accurately. Final design is typically based on information from test borehole log, results from thermal conductivity test, estimated construction cost (based on discussions with local drilling contractors) and land area constraints.

Geological information

Local water well logs and discussions with GHX drilling contractors indicated that a borehole depth of 200' to 275' would be the most cost-effective depth for this project. Tables were used to estimate thermal properties of the soil based on the drill logs to calculate the borehole required.

Well Name		1100.0		Well Depth	Depth Completed	Date Well Completed					
Township Range Dir Section Subsections Lie	12000	7.5 minu		257 ft.	257 ft.	04/30/1971					
132 43 W 3 BABBDA EM	vation Method	topograp	staic c	Drilling Method							
		feet)	<i>*</i>								
Well Address				Drilling Fluid	Well Hydrofractured?	Yes No					
MN				-	From Ft. to Ft.						
				Use Monitor well							
Geological Material FILL & SAND & BOULDERS	Color Hardne	ess From 0	15	Casing Type Joint N No Above/Below ft.	o Information Drive Sho	e? Yes					
SAND & BOULDERS CLAV & SAND STREAKS	BROWN	15	20	Casing Diameter	Weight	Hole Diameter					
CLAY WITH BOULDERS	BLUE	26	35	Open Hole from ft. t	o ft.						
CLAY & SAND STREAKS	BLUE	35	44	Screen Make Ty	pe						
CLAY WITH MED. FINE SAND STREAKS	GRAY	50	70	Dismeter Sta	tiGauze Length	Set Between					
CLAY WITH BOULDERS	GRAY	70	74	Charlieter 010	e outre - Cengen	oet between					
SANDY CLAY WITH BOULDERS	GRAY HARD YELLOW	93	130								
FINE SILTY SAND CLAY STREAKS		130	198								
SANDY CLAY	BLUE	198	209								
SANDY CLAY WITH BOOLDERS SAND WITH CLAY STREAKS		200	215	Static Water Level							
COARSE SAND & LOOSE GRAVEL		215	227	II. from Date Measu PUMPING LEVEL (bal	red						
CLAY CLAY WITH GRAVEL STREAK	GRAY HARD	227	230	ft. after hrs. pumping	gpm.						
CLAY WITH BOULDERS	GRAY	235	237								
SAND WITH CLAY STREAKS	GRAV	237	240	Well Head Completion Pitless adapter manufactor	rer Model						
Wan I		240	-	Casing Protection	12 in. above grade						
				At-grade (Environm	ental Wells and Borings C	NLY)					

Preliminary GHX layout on site

Hourly energy model loads provides more detailed information to calculate the GHX more accurately. Final design is typically based on information from test borehole log, results from thermal conductivity test, estimated construction cost (based on discussions with local drilling contractors) and land area constraints.

From feasibility to design & implementation

The initial report estimated the approximate cost of installing a GSHP system in the Library. Soil properties were estimated, an hourly energy model was created, and a GHX model was created based on the initial findings. The estimated cost of installing a GHX was \$105,000. The next step is detailed design and implementation.

Feasibility Client desires GeoExchange system The Building Mechanical System Vertical GHX Horizontal GHX Pond, lake HX Open well Standing column Energy Cost	Hybrid Options Integrated Design Process
Confirmation Test Drill/Excavation TC Test	

Initial & updated energy load profile

Several iterations of an hourly energy model were developed to determine the feasibility of installing a GSHP system. As building plans finalized, building occupancy schedules were refined and mechanical system designs were developed, initial energy model was updated based on most recent information.

	Night Set	tback Elimi	nated			Lik	orary - Loads R	evised 2016-02	2-01
Month	th Geo Cooling Geo Heating					Geo C	ooling	Geo H	eating
	kBtu	kBtu/hr	kBtu	kBtu/hr		kBtu	kBtu/hr	kBtu	kBtu/hr
Jan	1191	22	57760	307	Jan	2944	76	92228	498
Feb	2515	61	45430	219	Feb	6618	121	74103	442
Mar	7956	199	31817	222	Mar	9465	208	55901	428
Apr	23359	306	8401	53	Apr	19538	315	16613	364
May	37031	337	2467	50	May	31168	392	7856	356
Jun	59677	466	485	16	Jun	56369	544	825	205
Jul	91371	489	28	8	Jul	90300	600	14	5
Aug	93328	522	77	10	Aug	93134	592	73	42
Sep	52033	506	1387	22	Sep	45318	560	3579	286
Oct	14836	327	12125	74	Oct	12517	333	28559	412
Nov	7236	93	21661	99	Nov	8985	128	45079	445
Dec	2556	40	43202	178	Dec	4250	87	74467	473
	<mark>393,088</mark>	522	224,840	307		380,606	600	399,297	498
Annual	Tons	44	Tons	26		Tons	50	Tons	41
	EFLH	753	EFLH	733		EFLH	634	EFLH	802

Initial & updated energy load profile

Graphic representation of building energy load profile. Cooling loads show a small increase, but heating loads have increased significantly. The loads are more balanced than initially estimated.

Soil properties tested – thermal conductivity

A thermal conductivity test was completed in September, 2015. Calculated thermal conductivity is 0.971 Btu/hr * ft * °F. The conductivity seems reasonable based on the drilling log.

Soil properties tested – thermal diffusivity

Thermal diffusivity is estimated based on the layers of clay, silt, sands and gravel found in the formation. Reviewing thermal diffusivity charts and calculating a weighted average shows a lower result: 0.74 ft² / day (used to calculate updated GHX field)

Foot	Net Est'd Diff Weig		Weighted	Lithology Description	Circulating Fluid	Water	
Start	End	Net	ft²/day	Average	Liulology Descriptic	Starting Borehole Temp.	48.7° F
0.0	8.0	8.0	0.70	0.0187	Fill	Avg. Volts	239.3
8.0	15.0	7.0	0.60	0.0140	Brown Clay	Avg. Amps	11.26
15.0	40.0	25.0	0.60	0.0500	Gray Clay	Avg. Power (Watts)	2695 53
40.0	50.0	10.0	0.90	0.0300	Sand	Avg. Hower (Watts)	2000.00
50.0	75.0	25.0	1.00	0.0833	Gravel	Avg. Heat Injected (BTU/hour)	9197.53
75.0	95.0	20.0	0.80	0.0533	Till with Gravel	Test Duration (Hours)	48
95.0	148.0	53.0	0.70	0.1237	Till	Test Period Analyzed	1.00-48.00
148.0	156.0	8.0	0.90	0.0240	Sand	Slope	2.513
156.0	220.0	64.0	0.70	0.1493	Till		
220.0	226.0	6.0	0.90	0.0180	Sand		
226.0	300.0	74.0	0.70	0.1727	Till	Coloulated Thermol Constructivity	0.074 Phy/h # 61.95
				300.0	Max depth drilled in feet	Calculated Thermal Conductivity	0.971 Btu/nr-tt-*F
				0	U-bend depth installed below grade		
				0.74	Total length weighted average, ft²/d	Estimated Thermal Diffusivity	1.17 ft^2/day

Long term performance of GHX

GHX modeling software can calculate the long term impact of unbalanced energy loads to and from the ground. Graph A is based on the energy model used in the feasibility assessment...it shows approximately an 8°F temperature increase over 10 years. Graph B shows calculations based on the updated energy model...approximately a 3°F rise over 10 years...because the loads are more balanced.

Keeping GSHP projects on the table

GHX configuration

To ensure maximum performance from a GHX, flow rates in each of the boreholes should be approximately equal and high enough to ensure the flow is not laminar in some of the boreholes. The simplest method of ensuring equal flow is a reverse / return piping configuration.

Designing the GHX to facilitate air removal

Air trapped in GHX piping can block flow through some boreholes. A flow velocity of 2 feet per second is needed through each section of the GHX piping to remove air. The chart shows the required flow rate needed to remove air from various pipe sizes used in the GHX design.

	Flow rate (gpm) requ	uired to achieve velocity	of 2 feet per second
Pipe Diameter	SDR11	SDR13.5	SDR15.5
0.75"	3.55	n/a	n/a
1.00"	5.56	n/a	n/a
1.25"	8.87	9.65	n/a
2.00"	18.16	19.76	20.70
3.00"	39.44	42.93	44.96

Reducing header

In most projects U-tubes in the boreholes are connected to a header. It is impractical to install valves to facilitate the removal of air. Reducing headers are used to ensure the flow rate in each section of the header is adequate to remove the air from the system.

U-tube pipe size in the borehole

Equipment specified for the Library requires flow rate of 150 gpm. Total borehole depth determined by test borehole depth...that in turn determines number of boreholes. Calculations run with 1.00" pipe (as per test borehole) and with 1.25" pipe. Pressure drop much lower with 1.25" and Reynolds number still high enough.

1: 1.00" U-tube piping			2: 1.25" U-tube piping		
Overview	Piping Materials List		Overview	Pipir	ng Materials List
Calculate BV	Peak Load		Calculate BV	Peak Load	•
System Summary Pumping Po	ower Score: 2.6 🔆		System Summary Pumping P	ower Score:	1.2 *****
Total Pipe Length (ft): Total Circuit Pipe Length (ft): Modules Manifolds Pre-Manifold: Number of Circuits: Includes Balancing Valves: System Fluid Type: Prop y System Fluid Volume (Gallons):	15804.0 14400.0 2 1 0 24 No ylene Glycol (17.7%) 1199.7	-	Total Pipe Length (ft): Total Circuit Pipe Length (ft): Modules Manifolds Pre-Manifold: Number of Circuits: Includes Balancing Valves: System Fluid Type: Prop System Fluid Volume (Gallons):	15864.0 14400.0 2 1 0 24 No ylene Glycol (1 1624.7	18.3%)
Operational Performance - PEAK	LOAD Mode 21		Operational Performance - PEAK	LOAD Mode	21
System Flow Rate (gpm): System Pressure Drop (ft.hd.): Max GHX Module Pressure Drop (ft.hd. Reynolds Number Range for Circuits:	150.1 29.3): 28.4 4434 <> 5322		System Flow Rate (gpm): System Pressure Drop (ft.hd.): Max GHX Module Pressure Drop (ft.hd. Reynolds Number Range for Circuits:	150.1 13.7): 12.9 3548 <	-> 4227
Power Performance			Power Performance		
Peak Load (kBtu/Hr): Total Circulation Pump Power (hP):	600.4 1.31		Peak Load (kBtu/Hr): Total Circulation Pump Power (hP):	600.4 0.61	
Purging Performance (Fluid:Wate	er)		Purging Performance (Fluid:Wate	er)	
Purging Flow Rate (gpm): Purging Pressure Drop (ft.hd.): Required Purge Pump Power (hP):	71.0 23.3 0.70		Purging Flow Rate (gpm): Purging Pressure Drop (ft.hd.): Required Purge Pump Power (hP):	107.2 22.3 1.01	

Integrating the test borehole

Test borehole drilled in September, 2015. 1.00" U-tube was installed in the borehole... but pressure drop is much lower using 1.25" pipe. Calculations done to determine if Reynolds number still adequate if integrated with borehole field using 1.25" pipe.

Check Reynolds numbers

During peak heat extraction heat transfer fluid becomes denser and more viscous... potentially going to laminar flow. In laminar flow (Reynolds number < 2,300) heat transfer is diminished. Calculations show that the Reynolds numbers are adequate with the 1.00" borehole connected to nearest GHX module.

	1: 1.25″ U-tube pi	ping in all b	oreholes			2: 1.00" Test bore	hole integra	ted with ne	arest GHX n	nodule 1	
N	lame	Pipe 1 Size	Pipe 2 Size	Pipe 1 Reyn	Pipe 2 Reyn	Name	Pipe 1 Size	Pipe 2 Size	Pipe 1 Reyn	Pipe 2 Reyn	
τ	Circuit #01	1 1/4"	1 1/4"	4096	4096	U Circuit #01	1 1/4"	1 1/4"	4277	4277	
U	Circuit #02	1 1/4"	1 1/4"	4065	4065	Circuit #02	1 1/4"	1 1/4"	4258	4258	
U	Circuit #03	1 1/4"	1 1/4"	4006	4006	U Circuit #03	1"	1"	2605	2605	
U	Circuit #04	1 1/4"	1 1/4"	4023	4023	Circuit #04	1 1/4"	1 1/4"	4198	4198	
U	Circuit #05	1 1/4"	1 1/4"	4130	4130	Circuit #05	1 1/4"	1 1/4"	4273	4273	
U	Circuit #06	1 1/4"	1 1/4"	4102	4102	Circuit #06	1 1/4"	1 1/4"	4239	4239 🗕	
U	Circuit #07	1 1/4"	1 1/4"	4102	4102	Circuit #07	1 1/4"	1 1/4"	4234	4234 💭	
U	Circuit #08	1 1/4"	1 1/4"	4130	4130	U Circuit #08	1 1/4"	1 1/4"	4256	4256	
U	Circuit #09	1 1/4"	1 1/4"	4023	4023	Circuit #09	1 1/4"	1 1/4"	4140	4140	
U	Circuit #10	1 1/4"	1 1/4"	4006	4006	Circuit #10	1 1/4"	1 1/4"	4115	4115	
ų	Circuit #11	1 1/4"	1 1/4"	4065	4065	Circuit #11	1 1/4"	1 1/4"	4169	4169	
ų	Circuit #12	1 1/4"	1 1/4"	4096	4096	Circuit #12	1 1/4"	1 1/4"	4193	4193	
ų	Circuit #01	1 1/4"	1 1/4"	3724	3724	Circuit #01	1 1/4"	1 1/4"	3760	3760	
ų	Circuit #02	1 1/4"	1 1/4"	3697	3697	Circuit #02	1 1/4"	1 1/4"	3732	3732	
ų	Circuit #03	1 1/4"	1 1/4"	3643	3643	Circuit #03	1 1/4"	1 1/4"	3678	3678	
ų	Circuit #04	1 1/4"	1 1/4"	3659	3659	Circuit #04	1 1/4"	1 1/4"	3694	3694	
ų	Circuit #05	1 1/4"	1 1/4"	3756	3756	Circuit #05	1 1/4"	1 1/4"	3792	3792	
L,	Circuit #06	1 1/4"	1 1/4"	3731	3731	Circuit #06	1 1/4"	1 1/4"	3766	3766	
ų	Circuit #07	1 1/4"	1 1/4"	3731	3731 🗙	Circuit #07	1 1/4"	1 1/4"	3766	3766	
ų	Circuit #08	1 1/4"	1 1/4"	3756	3756	Circuit #08	1 1/4"	1 1/4"	3792	3792	
4	Circuit #09	1 1/4"	1 1/4"	3659	3659	Circuit #09	1 1/4"	1 1/4"	3694	3694	
L,	Circuit #10	1 1/4"	1 1/4"	3643	3643	Circuit #10	1 1/4"	1 1/4"	3678	3678	
ų	Circuit #11	1 1/4"	1 1/4"	3697	3697	Circuit #11	1 1/4"	1 1/4"	3732	3732	
Ľ	Circuit #12	1 1/4"	1 1/4"	3724	3724	Circuit #12	1 1/4"	1 1/4"	3760	3760	

Location of 1.00" U-tube impacts flow rates

Supply & return runouts are longer to GHX module...reducing flow rates in U-tubes, and reducing Reynolds numbers. Reynolds number in 1.00" U-tube are close to laminar flow.

To increase flow rate to GHX module 2, balancing valves added at the manifold.

1.00" Test boreho	le integrate	d with GHX	2 – no bala	ncing v	alve	1.00" Test boreho	ole in GHX 2	Balancing	alves added		
Name	Pipe 1 Size	Pipe 2 Size	Pipe 1 Reyn	Pipe 2 R	eyn	Name	Pipe 1 Size	Pipe 2 Size	Pipe 1 Reyn	Pipe 2 F	Reyn
U Circuit #01	1 1/4"	1 1/4"	4128	4128		Circuit #01	1 1/4"	1 1/4"	3934	3934	
Circuit #02	1 1/4"	1 1/4"	4097	4097		Circuit #02	1 1/4"	1 1/4"	3904	3904	
Circuit #03	1 1/4"	1 1/4"	4037	4037		Circuit #03	1 1/4"	1 1/4"	3847	3847	
Circuit #04	1 1/4"	1 1/4"	4054	4054		Circuit #04	1 1/4"	1 1/4"	3863	3863	
Circuit #05	1 1/4"	1 1/4"	4162	4162	ြ	Circuit #05	1 1/4"	1 1/4"	3966	3966	G
Circuit #06	1 1/4"	1 1/4"	4134	4134	Ť	Circuit #06	1 1/4"	1 1/4"	3939	3939	T
Circuit #07	1 1/4"	1 1/4"	4134	4134	•	Circuit #07	1 1/4"	1 1/4"	3939	3939	
Circuit #08	1 1/4"	1 1/4"	4162	4162	\sim	Circuit #08	1 1/4"	1 1/4"	3966	3966	
Circuit #09	1 1/4"	1 1/4"	4054	4054	-	Circuit #09	1 1/4"	1 1/4"	3863	3863	-
Circuit #10	1 1/4"	1 1/4"	4037	4037		Circuit #10	1 1/4"	1 1/4"	3847	3847	
Circuit #11	1 1/4"	1 1/4"	4097	4097		Circuit #11	1 1/4"	1 1/4"	3904	3904	
Circuit #12	1 1/4"	1 1/4"	4128	4128		Circuit #12	1 1/4"	1 1/4"	3934	3934	
Circuit #01	1 1/4"	1 1/4"	3890	3890		Circuit #01	1 1/4"	1 1/4"	4095	4095	
U Circuit #02	1 1/4"	1 1/4"	3873	3873	_	Circuit #02	1 1/4"	1 1/4"	4077	4077	
Circuit #03	1"	1"	2366	2366		Circuit #03	1"	1*	2491	2491	
Circuit #04	1 1/4"	1 1/4"	3819	3819	~	Circuit #04	1 1/4"	1 1/4"	4020	4020	
Circuit #05	1 1/4"	1 1/4"	3887	3887	G	Circuit #05	1 1/4"	1 1/4"	4092	4092	G
Circuit #06	1 1/4"	1 1/4"	3857	3857	I .	Circuit #06	1 1/4"	1 1/4"	4060	4060	I
Circuit #07	1 1/4"	1 1/4"	3851	3851	×	Circuit #07	1 1/4"	1 1/4"	4054	4054	×
Circuit #08	1 1/4"	1 1/4"	3872	3872	N	Circuit #08	1 1/4"	1 1/4"	4076	4076	N
Circuit #09	1 1/4"	1 1/4"	3766	3766		Circuit #09	1 1/4"	1 1/4"	3965	3965	
Circuit #10	1 1/4"	1 1/4"	3744	3744		Circuit #10	1 1/4"	1 1/4"	3941	3941	
Circuit #11	1 1/4"	1 1/4"	3792	3792		Circuit #11	1 1/4"	1 1/4"	3991	3991	
Circuit #12	1 1/4"	1 1/4"	3813	3813		Circuit #12	1 1/4"	1 1/4"	4014	4014	

tem. Runout pipe size, fluid specifications, flow ove air from the system and

Borehole design details

Borehole design details and QA/QC program is critical to the performance of the GHX. Because the boreholes and connecting piping are buried under a parking lot it will be expensive and/or difficult to change anything after it is built.

Calculations	Results Fluid Soil U-Tube Pattern Extra kW Information
Calculate	Calculated Borehole Equivalent Thermal Resistance Borehole Thermal Resistance: 0.194 h*ft*°F/Btu Pipe Parameters
C Fixed Temperature	Pipe Resistance: 0.104 h*ft*%/Btu Check Pipe Tables
Fixed Length	Pipe Size: 1 1/4 in. (32 mm) U-Tube Configuration
90.0 °F 40.0 °F	Outer Diameter: 1.660 in OO C Single
Borehole Length: 300 ft	Inner Diameter: 1.360 in Oouble
Grid Layout	Pipe Type: SDR11
Use External File	Flow Type: Turbulent
Borehole Number: 24	Radial Pipe Placement Borehole Diameter
Rows Across: 12 Rows Down: 2 Separation: 25.0 ft	C Close Together Borehole Diameter: 4.75 in
Piping Design	Backfill (Grout) Information
Piping Builder	6 ∂ ∩ Along Outer Wall Thermal Conductivity: 1.20 Btu/(h*ft*°F)

Grout specifications and quality control

The performance of a borehole is contingent is based on the design. If it's not built as designed it will not perform as expected. Borehole diameter, depth, pipe specifications, pipe placement, grout specifications...are all critical to performance of the system.

TG Lit	e / Po	owerTECx I	Mix Tal	ble				RECOMMENDED BATCH QUANTITIES			
Target TC (Btu / hr ft °F)	TG Lite (lb)	PowerTECx (lb)	Mix Water (gal)	Yield (gal)	Density (Ib/gal)	% Total Solids (by weight)	% Active Solids (by weight)	TG Lite (bags)	PowerTECx (bags)	Water (gals)	
0.79	50	5.0	15.5	18.1	10.2	29.8	27.9	3	1	46.5	
0.88	50	7.5	16.5	19.2	10.2	29.5	26.7	2	1	33.0	
1.00	50	7.5	16.0	18.7	10.2	30.1	27.3	2	1	32.0	
1.07	50	10.0	18.0	20.8	10.1	28.6	25.0	3	2	54.0	
1.14	50	10.0	17.5	20.3	10.1	29.1	25.5	3	2	52.5	
1.20	50	10.0	16.5	19.3	10.2	30.4	26.7	3	2	49.5	

			Pipe 1 Flow	Pipe 2 Flow	Pipe 1	Pipe 2	Pipe 1 Pressure	Pipe 2 Pressure
Library GHX Details	Pipe 1Size	Pipe 2 Size	Rate	Rate	Reynold's	Reynold's	Drop	Drop
Manifold #01 - Supply-Return Runout - Manifold 1	4"	4"	150.10 gpm	150.10 gpm	33042	33042	0.4 ft. hd	0.4 ft. hd
Manifold #01 - Pipe Section #01 - Manifold 1	4"	4"	150.10 gpm	150.10 gpm	33042	33042	0.0 ft. hd	0.0ft.hd
GHX Module #01 - Supply-Return Runout - Module 1	3"	3"	75.82 gpm	75.82 gpm	21462	21462	0.6 ft. hd	5.5 ft. hd
Circuit #01	1 1/4"	11/4"	6.57 gpm	6.57 gpm	4079	4079	3.7 ft. hd	3.7 ft. hd
GHX Module #01 - Pipe Section #01	3"	11/4"	69.26 gpm	6.57 gpm	19603	4079	0.4 ft. hd	0.3 ft. hd
Circuit #02	1 1/4"	11/4"	6.53 gpm	6.53 gpm	4056	4056	3.6 ft. hd	3.6 ft. hd
GHX Module #01 - Pipe Section #02	3"	2"	62.73 gpm	13.09 gpm	17756	5686	0.4 ft. hd	0.2 ft. hd
Circuit #03	1 1/4"	11/4"	6.45 gpm	6.45 gpm	4005	4005	3.5 ft. hd	3.5 ft. hd
GHX Module #01 - Pipe Section #03	3"	2"	56.29 gpm	19.54 gpm	15931	8485	0.3 ft. hd	0.4 ft. hd
Circuit #04	1 1/4"	11/4"	6.48 gpm	6.48 gpm	4029	4029	3.5 ft. hd	3.5 ft. hd
GHX Module #01 - Pipe Section #04	3"	2"	49.80 gpm	26.02 gpm	14096	11301	0.2 ft. hd	0.6 ft. hd
Circuit #05	1 1/4"	11/4"	6.67 gpm	6.67 gpm	4142	4142	3.7 ft. hd	3.7 ft. hd
GHX Module #01 - Pipe Section #05	3"	3"	43.13 gpm	32.69 gpm	12209	9253	0.2 ft. hd	0.1 ft. hd
Circuit #06	1 1/4"	11/4"	6.63 gpm	6.63 gpm	4120	4120	3.6 ft. hd	3.6 ft. hd
GHX Module #01 - Pipe Section #06	3"	3"	36.50 gpm	39.32 gpm	10332	11129	0.1 ft. hd	0.2 ft. hd
Circuit #07	1 1/4"	11/4"	6.64 gpm	6.64 gpm	4126	4126	3.7 ft. hd	3.7 ft. hd
GHX Module #01 - Pipe Section #07	3"	3"	29.86 gpm	45.96 gpm	8453	13009	0.1 ft. hd	0.2 ft. hd
Circuit #08	1 1/4"	11/4"	6.69 gpm	6.69 gpm	4159	4159	3.7 ft. hd	3.7 ft. hd
GHX Module #01 - Pipe Section #08	2"	3"	23.17 gpm	52.65 gpm	10062	14903	0.5 ft. hd	0.3 ft. hd
Circuit #09	1 1/4"	11/4"	6.57 gpm	6.57 gpm	4085	4085	3.6 ft. hd	3.6 ft. hd
GHX Module #01 - Pipe Section #09	2"	3"	16.60 gpm	59.23 gpm	7207	16764	0.3 ft. hd	0.3 ft. hd
Circuit #10	1"	1"	3.23 gpm	3.23 gpm	2533	2533	2.7 ft. hd	2.7 ft. hd
GHX Module #01 - Pipe Section #10	2"	3"	13.37 gpm	62.46 gpm	5804	17678	0.2 ft. hd	0.4 ft. hd
Circuit #11	1 1/4"	11/4"	6.67 gpm	6.67 gpm	4143	4143	3.7 ft. hd	3.7 ft. hd
GHX Module #01 - Pipe Section #11	1 1/4"	3"	6.70 gpm	69.13 gpm	4162	19566	0.3 ft. hd	0.4 ft. hd
Circuit #12	1 1/4"	11/4"	6.70 gpm	6.70 gpm	4162	4162	3.8 ft. hd	3.8 ft. hd
Manifold #01 - Pipe Section #02 - Manifold 1	4"	4"	74.28 gpm	74.28 gpm	16351	16351	0.0 ft. hd	0.0 ft. hd
GHX Module #02 - Supply-Return Runout - Module 2	3"	3"	74.28 gpm	74.28 gpm	21024	21024	1.1 ft. hd	5.7 ft. hd
Circuit #01	1 1/4"	11/4"	6.23 gpm	6.23 gpm	3869	3869	3.4 ft. hd	3.4 ft. hd
GHX Module #02 - Pipe Section #01	3"	11/4"	68.05 gpm	6.23 gpm	19261	3869	0.4 ft. hd	0.3 ft. hd
Circuit #02	1 1/4"	11/4"	6.18 gpm	6.18 gpm	3841	3841	3.3 ft. hd	3.3 ft. hd
GHX Module #02 - Pipe Section #02	3"	2"	61.87 gpm	12.41 gpm	17511	5389	0.3 ft. hd	0.2 ft. hd
Circuit #03	1 1/4"	11/4"	6.09 gpm	6.09 gpm	3785	3785	3.2 ft. hd	3.2 ft. hd
GHX Module #02 - Pipe Section #03	3"	2"	55.78 gpm	18.50 gpm	15787	8034	0.3 ft. hd	0.3 ft. hd
Circuit #04	1 1/4"	11/4"	6.12 gpm	6.12 gpm	3801	3801	3.2 ft. hd	3.2 ft. hd
GHX Module #02 - Pipe Section #04	3"	2"	49.66 gpm	24.62 gpm	14055	10691	0.2 ft. hd	0.5 ft. hd
Circuit #05	1 1/4"	11/4"	6.28 gpm	6.28 gpm	3902	3902	3.3 ft. hd	3.3 ft. hd
GHX Module #02 - Pipe Section #05	3"	3"	43.38 gpm	30.90 gpm	12278	8746	0.2 ft. hd	0.1 ft. hd
Circuit #06	1 1/4"	11/4"	6.24 gpm	6.24 gpm	3876	3876	3.3 ft. hd	3.3 ft. hd
GHX Module #02 - Pipe Section #06	3"	3"	37.14 gpm	37.14 gpm	10512	10512	0.1 ft. hd	0.1 ft. hd
Circuit #07	1 1/4"	11/4"	6.24 gpm	6.24 gpm	3876	3876	3.3 ft. hd	3.3 ft. hd
GHX Module #02 - Pipe Section #07	3"	3"	30.90 gpm	43.38 gpm	8746	12277	0.1 ft. hd	0.2 ft. hd
Circuit #08	1 1/4"	11/4"	6.28 gpm	6.28 gpm	3902	3902	3.3 ft. hd	3.3 ft. hd
GHX Module #02 - Pipe Section #08	2"	3"	24.62 gpm	49.66 gpm	10691	14055	0.5 ft. hd	0.2 ft. hd
Circuit #09	1 1/4"	11/4"	6.12 gpm	6.12 gpm	3801	3801	3.2 ft. hd	3.2 ft. hd
GHX Module #02 - Pipe Section #09	2"	3"	18.50 gpm	55.77gpm	8034	15787	0.3 ft. hd	0.3 ft. hd
Circuit #10	1 1/4"	1 1/4"	6.09 gpm	6.09 gpm	3785	3785	3.2 ft. hd	3.2 ft. hd
GHX Module #02 - Pipe Section #10	2.	3.	12.41 gpm	61.87 gpm	5389	17511	0.2 ft. hd	0.3 ft. hd
	1 1/4-	11/4-	6.18 gpm	6.18 gpm	3841	3841	3.3 ft. hd	3.3 ft. hd
GHX Module #02 - Pipe Section #11	1 1/4	3.	6.23 gpm	68.05 gpm	3869	19261	0.3 ft. hd	0.4ft.hd
Circuit #12	1 1/4"	11/4	6.23 gpm	6.23 gpm	3869	3869	3.4 ft. hd	3.4 ft. hd

aders is important for pressure h. Because it will be buried, it's used to ensure accuracy and

			Pine 1 Flow	Pine 2 Flow			Pipe1	Pipe 2	Pine 1 Pressure	Pine 2 Pressure
Library - purging flow rate	Pipe1Size	Pipe 2 Size	Rate	Rate	Pipe1 Velocity	Pipe 2 Velocity	Reynold's	Reynold's	Drop	Drop
			Hate	mate			Number	Number	5100	5100
Manifold #01 - Supply-Return Runout - Manifold 1	4"	4"	276.09 gpm	276.09 gpm	7.68 ft/s	7.68 ft/s	127247	127247	1.0 ft. hd	1.0 ft. hd
Manifold #01 - Pipe Section #01 - Manifold 1	4"	4"	276.09 gpm	276.09 gpm	7.68 ft/s	7.68 ft/s	127247	127247	0.0 ft. hd	0.0 ft. hd
GHX Module #01 - Supply-Return Runout - Module 1	3"	3"	139.32 gpm	139.32 gpm	6.40 ft/s	6.40 ft/s	82561	82561	1.5 ft. hd	13.5 ft. hd
Circuit #01	1 1/4"	11/4"	12.07 gpm	12.07 gpm	2.67 ft/s	2.67 ft/s	15697	15697	8.4 ft. hd	8.4 ft. hd
GHX Module #01 - Pipe Section #01	3"	11/4"	127.25 gpm	12.07 gpm	5.85 ft/s	2.67 ft/s	75410	15697	1.0 ft. hd	0.7 ft. hd
Circuit #02	1 1/4"	11/4"	11.99 gpm	11.99 gpm	2.66 ft/s	2.66 ft/s	15603	15603	8.2 ft. hd	8.2 ft. hd
GHX Module #01 - Pipe Section #02	3"	2"	115.26 gpm	24.06 gpm	5.30 ft/s	2.60 ft/s	68302	21876	0.9 ft. hd	0.4 ft. hd
Circuit #03	1 1/4"	11/4"	11.84 gpm	11.84 gpm	2.62 ft/s	2.62 ft/s	15401	15401	8.0 ft. hd	8.0 ft. hd
GHX Module #01 - Pipe Section #03	3"	2"	103.42 gpm	35.90 gpm	4.75 ft/s	3.88 ft/s	61286	32640	0.7 ft. hd	0.9 ft. hd
Circuit #04	1 1/4"	11/4"	11.91 gpm	11.91 gpm	2.64 ft/s	2.64 ft/s	15492	15492	8.1 ft. hd	8.1 ft. hd
GHX Module #01 - Pipe Section #04	3"	2"	91.51 gpm	47.81 gpm	4.21 ft/s	5.17 ft/s	54228	43468	0.6 ft. hd	1.4 ft. hd
Circuit #05	1 1/4"	11/4"	12.25 gpm	12.25 gpm	2.71 ft/s	2.71 ft/s	15929	15929	8.5 ft. hd	8.5 ft. hd
GHX Module #01 - Pipe Section #05	3"	3"	79.26 gpm	60.05 gpm	3.64 ft/s	2.76 ft/s	46972	35589	0.5 ft. hd	0.3 ft. hd
Circuit #06	1 1/4"	11/4"	12.18 gpm	12.18 gpm	2.70 ft/s	2.70 ft/s	15844	15844	8.4 ft. hd	8.4 ft. hd
GHX Module #01 - Pipe Section #06	3"	3"	67.08 gpm	72.23 gpm	3.08 ft/s	3.32 ft/s	39754	42807	0.3 ft. hd	0.4 ft. hd
Circuit #07	1 1/4"	11/4"	12.20 gpm	12.20 gpm	2.70 ft/s	2.70 ft/s	15865	15865	8.4 ft. hd	8.4 ft. hd
GHX Module #01 - Pipe Section #07	3"	3"	54.89 gpm	84.43 gpm	2.52 ft/s	3.88 ft/s	32527	50034	0.2 ft. hd	0.5 ft. hd
Circuit #08	1 1/4"	11/4"	12.29 gpm	12.29 gpm	2.72 ft/s	2.72 ft/s	15993	15993	8.6 ft. hd	8.6 ft. hd
GHX Module #01 - Pipe Section #08	2"	3"	42.59 gpm	96.72 gpm	4.61 ft/s	4.45 ft/s	38725	57320	1.2 ft. hd	0.6 ft. hd
Circuit #09	1 1/4"	11/4"	12.08 gpm	12.08 gpm	2.68 ft/s	2.68 ft/s	15710	15710	8.3 ft. hd	8.3 ft. hd
GHX Module #01 - Pipe Section #09	2"	3"	30.52 gpm	108.80 gpm	3.30 ft/s	5.00 ft/s	27745	64477	0.7 ft. hd	0.8 ft. hd
Circuit #10	1"	1"	5.95 gpm	5.95 gpm	2.10 ft/s	2.10 ft/s	9771	9771	8.4 ft. hd	8.4 ft. hd
GHX Module #01 - Pipe Section #10	2"	3"	24.56 gpm	114.75 gpm	2.66 ft/s	5.28 ft/s	22334	68004	0.4 ft. hd	0.9 ft. hd
Circuit #11	1 1/4"	11/4"	12.25 gpm	12.25 gpm	2.71 ft/s	2.71 ft/s	15940	15940	8.6 ft. hd	8.6 ft. hd
GHX Module #01 - Pipe Section #11	1 1/4"	3"	12.31 gpm	127.01 gpm	2.73 ft/s	5.84 ft/s	16015	75265	0.7 ft. hd	1.0 ft. hd
Circuit #12	1 1/4"	11/4"	12.31 gpm	12.31 gpm	2.73 ft/s	2.73 ft/s	16015	16015	8.7 ft. hd	8.7 ft. hd
Manifold #01 - Pipe Section #02 - Manifold 1	4"	4"	136.78 gpm	136.78 gpm	3.80 ft/s	3.80 ft/s	63038	63038	0.0 ft. hd	0.0 ft. hd
GHX Module #02 - Supply-Return Runout - Module 2	3"	3"	136.78 gpm	136.78 gpm	6.29 ft/s	6.29 ft/s	81055	81055	2.6 ft. hd	14.2 ft. hd
Circuit #01	1 1/4"	11/4"	11.47 gpm	11.47 gpm	2.54 ft/s	2.54 ft/s	14926	14926	7.7 ft. hd	7.7 ft. hd
GHX Module #02 - Pipe Section #01	3"	1 1/4"	125.30 gpm	11.47 gpm	5.76 ft/s	2.54 ft/s	74256	14926	1.0 ft. hd	0.6 ft. hd
Circuit #02	1 1/4"	11/4"	11.38 gpm	11.38 gpm	2.52 ft/s	2.52 ft/s	14810	14810	7.6 ft. hd	7.6 ft. hd
GHX Module #02 - Pipe Section #02	3"	2"	113.92 gpm	22.86 gpm	5.24 ft/s	2.47 ft/s	67509	20783	0.9 ft. hd	0.4 ft. hd
Circuit #03	1 1/4"	11/4"	11.22 gpm	11.22 gpm	2.48 ft/s	2.48 ft/s	14592	14592	7.3 ft. hd	7.3 ft. hd
GHX Module #02 - Pipe Section #03	3"	2"	102.70 gpm	34.08 gpm	4.72 ft/s	3.69 ft/s	60861	30982	0.7 ft. hd	0.8 ft. hd
Circuit #04	1 1/4"	11/4"	11.26 gpm	11.26 gpm	2.50 ft/s	2.50 ft/s	14653	14653	7.4 ft. hd	7.4 ft. hd
GHX Module #02 - Pipe Section #04	3"	2"	91.44 gpm	45.34 gpm	4.20 ft/s	4.91 ft/s	54186	41222	0.6 ft. hd	1.3 ft. hd
Circuit #05	1 1/4"	11/4"	11.56 gpm	11.56 gpm	2.56 ft/s	2.56 ft/s	15043	15043	7.7 ft. hd	7.7 ft. hd
GHX Module #02 - Pipe Section #05	3"	3"	79.87 gpm	56.90 gpm	3.67 ft/s	2.62 ft/s	47333	33722	0.5 ft. hd	0.3 ft. hd
Circuit #06	1 1/4"	11/4"	11.48 gpm	11.48 gpm	2.54 ft/s	2.54 ft/s	14940	14940	7.6 ft. hd	7.6 ft. hd
GHX Module #02 - Pipe Section #06	3"	3"	68.39 gpm	68.39 gpm	3.14 ft/s	3.14 ft/s	40527	40527	0.3 ft. hd	0.3 ft. hd
Circuit #07	1 1/4"	11/4"	11.48 gpm	11.48 gpm	2.54 ft/s	2.54 ft/s	14940	14940	7.6 ft. hd	7.6 ft. hd
GHX Module #02 - Pipe Section #07	3"	3"	56.90 gpm	79.87 gpm	2.62 ft/s	3.67 ft/s	33722	47333	0.3 ft. hd	0.5 ft. hd
Circuit #08	1 1/4"	11/4"	11.56 gpm	11.56 gpm	2.56 ft/s	2.56 ft/s	15043	15043	7.7 ft. hd	7.7 ft. hd
GHX Module #02 - Pipe Section #08	2"	3"	45.34 gpm	91.44 gpm	4.91 ft/s	4.20 ft/s	41222	54186	1.3 ft. hd	0.6 ft. hd
Circuit #09	1 1/4"	11/4"	11.26 gpm	11.26 gpm	2.50 ft/s	2.50 ft/s	14653	14653	7.4 ft. hd	7.4 ft. hd
GHX Module #02 - Pipe Section #09	2"	3"	34.08 gpm	102.70 gpm	3.69 ft/s	4.72 ft/s	30982	60861	0.8 ft. hd	0.7 ft. hd
Circuit #10	1 1/4"	11/4"	11.22 gpm	11.22 gpm	2.48 ft/s	2.48 ft/s	14592	14592	7.3 ft. hd	7.3 ft. hd
GHX Module #02 - Pipe Section #10	2"	3"	22.86 gpm	113.92 gpm	2.47 ft/s	5.24 ft/s	20783	67509	0.4 ft. hd	0.9 ft. hd
Circuit #11	1 1/4"	11/4"	11.38 gpm	11.38 gpm	2.52 ft/s	2.52 ft/s	14810	14810	7.6 ft. hd	7.6 ft. hd
GHX Module #02 - Pipe Section #11	1 1/4"	3"	11.47 gpm	125.30 gpm	2.54 ft/s	5.76 ft/s	14926	74256	0.6 ft. hd	1.0 ft. hd
Circuit #12	1 1/4"	11/4"	11.47 gpm	11.47 gpm	2.54 ft/s	2.54 ft/s	14926	14926	7.7 ft. hd	7.7 ft. hd

rom system

should facilitate air

Detailed manifold design

Specifications for the manifold and transitions from HDPE supply / return runouts to manifold and building piping system should be clear. Building penetrations should be appropriate for soil conditions.

Flushing procedures

Design should facilitate the contractor's ability to fill, flush and purge the system as easily as possible. Flush ports and valves should be designed for flow rates required.

Design specifications for contractor should be very clear

Specifications for contractor should be as clear as possible. Should indicate the minimum flow rates required to flush air, dirt and debris from the system...to prevent poor operation after turnover.

Annual GHX temperature profile for building owner / operator

Building owner / operator should be provided with annual temperature profile the GHX is expected to operate at. If temperature deviates very much from expected profile, the cause should be determined. Operator should also be aware of the daily temperature range that can be expected.

Daily GHX temperature profile

- Energy model indicates cooling load of 50 tons, heating load 408 kBtu/hr
- GHX design based on actual TC test and energy model: 7,200' of borehole
- 7,200' X \$16 = \$115,000
- Geothermal vault not required
- Total extra cost of GSHP system = \$115,000 (versus \$256,000)

Keeping Ground Source Heat Pump Projects on the Table

Ed Lohrenz, B.E.S., CGD

204.318.2156 ed@geoptimize.ca

conference & expo

Duluth, MN February 20-22, 2017

